Synlett 2018; 29(17): 2269-2274
DOI: 10.1055/s-0037-1610906
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Base-Free N-Arylation of 8-Aminoquinoline Amides through Chelation Assistance

Guo-Wei Zhang
a   Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. of China   Email: xiaxf@jiangnan.edu.cn
,
b   Key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao, Jiangxi, 334001, P. R. of China
,
Wei He
a   Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. of China   Email: xiaxf@jiangnan.edu.cn
,
Xiao-Feng Xia*
a   Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. of China   Email: xiaxf@jiangnan.edu.cn
› Author Affiliations

We thank the National Science Foundation of China (NSF 21402066), the Natural Science Foundation of Jiangsu Province (BK20140139), and MOE&SAFEA for the 111 Project (B13025) for financial support.
Further Information

Publication History

Received: 18 July 2018

Accepted after revision: 20 August 2018

Publication Date:
11 September 2018 (online)


Abstract

A new and efficient approach for the N-arylation of 8-aminoquinoline amides with diaryliodonium salts has been developed. This chelation-assisted selective C–N cross-coupling reaction gave the desired N-arylated 8-aminoquinoline in moderate to good yields. In contrast to previous reports, no additional ligands and bases are used in this transformation. In addition, the anion of the diaryliodonium salt plays an important role in the success of the process.

Supporting Information

 
  • References and Notes


    • For selected examples, see:
    • 1a Carroll FI. Blackwell JT. Philip A. Twine CE. J. Med. Chem. 1976; 19: 1111
    • 1b Shiraki H. Kozar MP. Melendez V. Hudson TH. Ohrt C. Magill AJ. Lin AJ. J. Med. Chem. 2011; 54: 131
    • 1c Pal P. Rastogi SK. Gibson CM. Aston DE. Branen AL. Bitterwolf TE. ACS Appl. Mater. Interfaces 2011; 3: 279
    • 1d Araújo MJ. Bom J. Capela R. Casimiro C. Chambel P. Gomes P. Iley J. Lopes F. Morais J. Moreira R. de Oliveira E. do Rosário V. Vale N. J. Med. Chem. 2005; 48: 888

      For selected examples, see:
    • 2a Zaitsev VG. Shabashov D. Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 2b Shabashov D. Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
    • 2c Nadres ET. Santos GI. F. Shabashov D. Daugulis O. J. Org. Chem. 2013; 78: 9689
    • 2d Aihara Y. Chatani N. ACS Catal. 2016; 6: 4323
    • 2e Aihara Y. Tobisu M. Fukumoto Y. Chatani N. J. Am. Chem. Soc. 2014; 136: 15509
    • 3a Qiao H. Sun S. Zhang Y. Zhu H. Yu X. Yang F. Wu Y. Li Z. Wu Y. Org. Chem. Front. 2017; 4: 1981
    • 3b Cong X. Zeng X. Org. Lett. 2014; 16: 3716
    • 3c Sun M. Sun S. Qiao H. Yang F. Zhu Y. Kang J. Wu Y. Wu Y. Org. Chem. Front. 2016; 3: 1646
    • 3d Xia X.-F. Zhu S.-L. Gu Z. Wang H. RSC Adv. 2015; 5: 28892
    • 3e Zhu L. Qiu R. Cao X. Xiao S. Xu X. Au C.-T. Yin S.-F. Org. Lett. 2015; 17: 5528
    • 3f Qiao H. Sun S. Yang F. Zhu Y. Zhu W. Dong Y. Wu Y. Kong X. Jiang L. Wu Y. Org. Lett. 2015; 17: 6086
    • 3g Sahoo H. Reddy MK. Ramakrishna I. Baidya M. Chem. Eur. J. 2016; 22: 1592
    • 3h Ji D. He X. Xu Y. Xu Z. Bian Y. Liu W. Zhu Q. Xu Y. Org. Lett. 2016; 18: 4478
    • 3i Guo H. Chen M. Jiang P. Chen J. Pan L. Wang M. Xie C. Zhang Y. Tetrahedron 2015; 71: 70
    • 3j Jin L.-K. Lu G.-P. Cai C. Org. Chem. Front. 2016; 3: 1309
    • 3k He X. Xu Y.-Z. Kong L. Wu H. Ji D. Wang Z. Xu Y. Zhu Q. Org. Chem. Front. 2017; 4: 1046
    • 3l Zhao L. Li P. Xie X. Wang L. Org. Chem. Front. 2018; 5: 1689
  • 4 Suess AM. Ertem MZ. Cramer CJ. Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797
  • 5 Kathiravan S. Ghosh S. Hogarth G. Nicholls IA. Chem. Commun. 2015; 51: 4834
  • 6 Xiao Z. Yue Q. Ran Z. Zhang Q. Li D. Youji Huaxue 2018; 83: 1193
  • 7 Peng Y. Lei J. Qiu R. Peng L. Au C.-T. Yin S.-F. Org. Biomol. Chem. 2018; 16: 4065

    • For a recent review, see:
    • 8a Yosimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 8b Aradi K. Tóth BL. Tolnai GL. Novák Z. Synlett 2016; 27: 1456
    • 8c Olofsson B. Top. Curr. Chem. 2016; 373: 135
    • 8d Merritt EA. Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 9a Sandtorv AH. Stuart DR. Angew. Chem. Int. Ed. 2016; 55: 15812
    • 9b Tinnis F. Stridfeldt E. Lundberg H. Adolfsson H. Olofsson B. Org. Lett. 2015; 17: 2688
    • 9c Jung S.-H. Sung D.-B. Park C.-H. Kim W.-S. J. Org. Chem. 2016; 81: 7717
    • 9d Lucchetti N. Scalone M. Fantasia S. Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 13335
    • 9e Li P. Weng Y. Xu X. Cui X. J. Org. Chem. 2016; 81: 3994
    • 9f Aradi K. Mészáros Á. Tóth BL. Vincze Z. Novák Z. J. Org. Chem. 2017; 82: 11752
  • 10 CCDC 1565719 contains the supplementary crystallographic data for compound 3ag. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 11 Sahoo H. Mukherjee S. Grandhi GS. Selvakumar J. Baidya M. J. Org. Chem. 2017; 82: 2764
  • 12 N-Aryl-N-quinolin-8-ylaroylamides 3aa–3ma; General Procedure An oven-dried Schlenk tube (10 mL) equipped with a magnetic stirrer bar was charged with the appropriate N-quinolin-8-ylaroylamide 1 (0.3 mmol), diaryliodonium hexafluorophosphate 2 (0.6 mmol), Cu(OAc)2 . H2O (20 mol%, 0.06 mmol), and 4 Å MS (40 mg). DCE (3.0 mL) was then added from a syringe, and the mixture was stirred for 48 h at 80 °C in air. H2O (6 mL) was added to quench the reaction, and the resulting mixture was extracted with EtOAc (×2). The combined organic extracts were washed with brine, dried (Na2SO4), and concentrated. The crude product was purified by flash column chromatography [silica gel, PE–EtOAc (3:1)]. N-Phenyl-N-quinolin-8-ylbenzamide (3aa) Colorless solid; yield: 71 mg (73%); mp 125–128 °C. IR (KBr): 3054, 1660, 1594, 1493, 1463, 1343, 1310, 1269, 1177, 1132, 1075, 1028, 825, 789, 700 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.89–8.91 (m, 1 H), 8.07–8.09 (m, 1 H), 7.70–7.72 (m, 1 H), 7.57–7.62 (m, 3 H), 7.45–7.49 (m, 1 H), 7.32–7.35 (m, 1 H), 7.22–7.24 (m, 4 H), 7.09–7.16 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 171.6, 150.7, 144.7, 144.4, 141.8, 136.8, 135.8, 129.7, 129.3, 129.2, 128.9, 128.7, 127.6, 127.4, 126.9, 126.3, 125.8, 121.6. HRMS (ESI): m/z [M + H]+ calcd for C22H17N2O: 325.13354; found: 325.13327.