Nervenheilkunde 2018; 37(03): 167-175
DOI: 10.1055/s-0038-1642091
Seltene Erkrankungen
Schattauer GmbH

Seltene neuroimmunologische Syndrome mit Autoantikörpern gegen ZNS-Antigene

Rare neuroimmunological syndromes with autoantibodies against CNS antigens
B. Balint
1   Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
2   Department of Neurology, University Hospital Heidelberg, Germany
3   Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
,
H. Lerche
4   Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tübingen, Germany
,
F. Leypoldt
5   Department of Neurology, Christian-Albrechts-University Kiel, Germany
6   Neuroimmunology section, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein Kiel/Lübeck, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingegangen am: 20. November 2017

angenommen am: 28. November 2017

Publikationsdatum:
02. April 2018 (online)

Zusammenfassung

Das klinische Spektrum von Erkrankungen mit Antikörpern gegen ZNS-Antigene expandiert rasch und umfasst sowohl neurologische als auch psychiatrische Manifestationsformen. Insbesondere autoimmune Syndrome assoziiert mit neu entdeckten Antikörpern gegen Oberflächenantigene auf Neuronen, wie z. B. Rezeptoren oder rezeptorassoziierte Proteine, erlangen zunehmend an Bedeutung, da die Antikörper pathogenetisch relevant sind und in ihrer Gesamtheit eine neue Gruppe von Erkrankungen definieren, die meist gut auf immunmodulierende Therapien ansprechen. Auch wenn diese Erkrankungen insgesamt als selten gelten, verdienen sie besondere Beachtung, da eine frühzeitige Therapie ein entscheidender prognostischer Faktor ist. Dementsprechend wichtig ist die Erkennung und Diagnosestellung.

In diesem Übersichtsartikel behandeln wir das klinische Spektrum der Syndrome mit antineuronalen und -glialen Autoantikörpern, und beleuchten insbesondere charakteristische Präsentationen hinsichtlich Symptomatik und Altersgruppe, und gewisse Warnzeichen („red flags“), die entscheidende Hinweise auf die Diagnose darstellen.

Summary

The clinical spectrum associated with antibodies against central nervous system antigens is rapidly expanding and comprises both neurological and psychiatric manifestations.

The more recently discovered antibodies against neuronal surface antigens, such as receptors or receptor associated proteins, are of particular interest as these antibodies are pathogenic and define a group of disorders which is typically well responding to immunotherapy. Although these disorders are generally considered rare they should not be missed, as early treatment initiation is an important prognostic factor. In this review, we discuss the clinical spectrum of the new neuronal and glial surface antibodies, highlighting characteristic clinical presentations regarding symptoms and patient age group and emphasising red flags which can give the clue to diagnosis.

 
  • Literatur

  • 1 Lancaster E, Dalmau J. Neuronal autoantigens – pathogenesis, associated disorders and antibody testing. Nature reviews Neurology 2012; 08 (07) 380-90.
  • 2 Irani SR, Gelfand JM, Al-Diwani A, Vincent A. Cell-surface central nervous system autoantibodies: clinical relevance and emerging paradigms. Annals of neurology 2014; 76 (02) 168-84.
  • 3 Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA. The frequency of autoimmune N-methyl- D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2012; 54 (07) 899-904.
  • 4 Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T. et al. A clinical approach to diagnosis of autoimmune encephalitis. The Lancet Neurology 2016; 15 (04) 391-404.
  • 5 Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M. et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. The Lancet Neurology 2008; 07 (12) 1091-8.
  • 6 Titulaer MJ, McCracken L, Gabilondo I, Armangue T, Glaser C, Iizuka T. et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. The Lancet Neurology 2013; 12 (02) 157-65.
  • 7 Armangue T, Titulaer MJ, Malaga I, Bataller L, Gabilondo I, Graus F. et al. Pediatric anti- N-methyl-D-aspartate receptor encephalitis-clinical analysis and novel findings in a series of 20 patients. The Journal of pediatrics 2013; 162 (04) 850-6 e2.
  • 8 Pruss H, Finke C, Holtje M, Hofmann J, Klingbeil C, Probst C. et al. N-methyl-D-aspartate receptor antibodies in herpes simplex encephalitis. Annals of neurology 2012; 72 (06) 902-11.
  • 9 Planaguma J, Leypoldt F, Mannara F, Gutierrez-Cuesta J, Martin-Garcia E, Aguilar E. et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 2015; 138 (Pt 1): 94-109.
  • 10 Moscato EH, Peng X, Jain A, Parsons TD, Dalmau J, Balice-Gordon RJ. Acute mechanisms underlying antibody effects in anti-N-methyl-D-aspartate receptor encephalitis. Annals of neurology 2014; 76 (01) 108-19.
  • 11 Bastiaansen AEM, van Sonderen A, Titulaer MJ. Autoimmune encephalitis with anti-leucine-rich glioma-inactivated 1 or anti-contactin-associated protein-like 2 antibodies (formerly called voltagegated potassium channel-complex antibodies). Current opinion in neurology 2017; 30 (03) 302-9.
  • 12 Irani SR, Michell AW, Lang B, Pettingill P, Waters P, Johnson MR. et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Annals of neurology 2011; 69 (05) 892-900.
  • 13 van Sonderen A, Thijs RD, Coenders EC, Jiskoot LC, Sanchez E, de Bruijn MA. et al. Anti-LGI1 encephalitis: Clinical syndrome and long-term follow-up. Neurology 2016; 87 (14) 1449-56.
  • 14 Gadoth A, Pittock SJ, Dubey D, McKeon A, Britton JW, Schmeling JE. et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Annals of neurology 2017; 82 (01) 79-92.
  • 15 Irani SR, Stagg CJ, Schott JM, Rosenthal CR, Schneider SA, Pettingill P. et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013; 136 (Pt 10): 3151-62.
  • 16 Flanagan EP, Kotsenas AL, Britton JW, McKeon A, Watson RE, Klein CJ. et al. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurology neuroimmunology & neuroinflammation 2015; 02 (06) e161.
  • 17 Arino H, Armangue T, Petit-Pedrol M, Sabater L, Martinez-Hernandez E, Hara M. et al. Anti- LGI1-associated cognitive impairment: Presentation and long-term outcome. Neurology 2016; 87 (08) 759-65.
  • 18 Gadoth A, Singh J, Britton JW, Flanagan EP, Pittock SJ. Dacrystic seizures-a cry for help. Neurology neuroimmunology & neuroinflammation 2017; 04 (04) e372.
  • 19 Rocamora R, Becerra JL, Fossas P, Gomez M, Vivanco-Hidalgo RM, Mauri JA. et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis?. Seizure 2014; 23 (08) 670-3.
  • 20 Tofaris GK, Irani SR, Cheeran BJ, Baker IW, Cader ZM, Vincent A. Immunotherapy-responsive chorea as the presenting feature of LGI1-antibody encephalitis. Neurology 2012; 79 (02) 195-6.
  • 21 Kurtis MM, Toledano R, Garcia-Morales I, Gil-Nagel A. Immunomodulated parkinsonism as a presenting symptom of LGI1 antibody encephalitis. Parkinsonism & related disorders 2015; 21 (10) 1286-7.
  • 22 van Sonderen A, Roelen DL, Stoop JA, Verdijk RM, Haasnoot GW, Thijs RD. et al. Anti-LGI1 encephalitis is strongly associated with HLA-DR7 and HLA-DRB4. Annals of neurology 2017; 81 (02) 193-8.
  • 23 Kim TJ, Lee ST, Moon J, Sunwoo JS, Byun JI, Lim JA. et al. Anti-LGI1 encephalitis is associated with unique HLA subtypes. Annals of neurology 2017; 81 (02) 183-92.
  • 24 Simabukuro MM, Petit-Pedrol M, Castro LH, Nitrini R, Lucato L, Zambon AA. et al. GABAA receptor and LGI1 antibody encephalitis in a patient with thymoma. Neurology neuroimmunology & neuroinflammation 2015; 02 (02) e73.
  • 25 Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L. et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010; 133 (09) 2734-48.
  • 26 Ohkawa T, Fukata Y, Yamasaki M, Miyazaki T, Yokoi N, Takashima H. et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. The Journal of neuroscience 2013; 33 (46) 18161-74.
  • 27 Bien CG, Vincent A, Barnett MH, Becker AJ, Blumcke I, Graus F. et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 2012; 135 (Pt 5): 1622-38.
  • 28 Finke C, Pruss H, Heine J, Reuter S, Kopp UA, Wegner F. et al. Evaluation of Cognitive Deficits and Structural Hippocampal Damage in Encephalitis With Leucine-Rich, Glioma-Inactivated 1 Antibodies. JAMA neurology 2017; 74 (01) 50-9.
  • 29 Malter MP, Frisch C, Schoene-Bake JC, Helmstaedter C, Wandinger KP, Stoecker W. et al. Outcome of limbic encephalitis with VGKC-complex antibodies: relation to antigenic specificity. Journal of neurology 2014; 261 (09) 1695-705.
  • 30 Irani SR, Pettingill P, Kleopa KA, Schiza N, Waters P, Mazia C. et al. Morvan syndrome: clinical and serological observations in 29 cases. Annals of neurology 2012; 72 (02) 241-55.
  • 31 Klein CJ, Lennon VA, Aston PA, McKeon A, Pittock SJ. Chronic pain as a manifestation of potassium channel-complex autoimmunity. Neurology 2012; 79 (11) 1136-44.
  • 32 Lancaster E, Huijbers MG, Bar V, Boronat A, Wong A, Martinez-Hernandez E. et al. Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Annals of neurology 2011; 69 (02) 303-11.
  • 33 Honnorat J, Saiz A, Giometto B, Vincent A, Brieva L, de Andres C. et al. Cerebellar ataxia with antiglutamic acid decarboxylase antibodies: study of 14 patients. Archives of neurology 2001; 58 (02) 225-30.
  • 34 Joubert B, Gobert F, Thomas L, Saint-Martin M, Desestret V, Convers P. et al. Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis. Neurology neuroimmunology & neuroinflammation 2017; 04 (04) e371.
  • 35 Becker EB, Zuliani L, Pettingill R, Lang B, Waters P, Dulneva A. et al. Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia. Journal of neurology, neurosurgery, and psychiatry 2012; 83 (04) 437-40.
  • 36 van Sonderen A, Arino H, Petit-Pedrol M, Leypoldt F, Kortvelyessy P, Wandinger KP. et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016; 87 (05) 521-8.
  • 37 Bien CG, Mirzadjanova Z, Baumgartner C, Onugoren MD, Grunwald T, Holtkamp M. et al. Anticontactin-associated protein-2 encephalitis: relevance of antibody titres, presentation and outcome. European journal of neurology 2017; 24 (01) 175-86.
  • 38 Govert F, Witt K, Erro R, Hellriegel H, Paschen S, Martinez-Hernandez E. et al. Orthostatic myoclonus associated with Caspr2 antibodies. Neurology 2016; 86 (14) 1353-5.
  • 39 Krogias C, Hoepner R, Muller A, Schneider-Gold C, Schroder A, Gold R. Successful treatment of anti-Caspr2 syndrome by interleukin 6 receptor blockade through tocilizumab. JAMA neurology 2013; 70 (08) 1056-9.
  • 40 Petit-Pedrol M, Armangue T, Peng X, Bataller L, Cellucci T, Davis R. et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. The Lancet Neurology 2014; 13 (03) 276-86.
  • 41 Ohkawa T, Satake S, Yokoi N, Miyazaki Y, Ohshita T, Sobue G. et al. Identification and characterization of GABA(A) receptor autoantibodies in autoimmune encephalitis. The Journal of neuroscience 2014; 34 (24) 8151-63.
  • 42 Spatola M, Petit-Pedrol M, Simabukuro MM, Armangue T, Castro FJ, Barcelo MIArtigues. et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology. 2017 epub..
  • 43 Pettingill P, Kramer HB, Coebergh JA, Pettingill R, Maxwell S, Nibber A. et al. Antibodies to GABAA receptor alpha1 and gamma2 subunits: clinical and serologic characterization. Neurology 2015; 84 (12) 1233-41.
  • 44 Lancaster E, Lai M, Peng X, Hughes E, Constantinescu R, Raizer J. et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. The Lancet Neurology 2010; 09 (01) 67-76.
  • 45 Hoftberger R, Titulaer MJ, Sabater L, Dome B, Rozsas A, Hegedus B. et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013; 81 (17) 1500-6.
  • 46 Dogan MOnugoren, Deuretzbacher D, Haensch CA, Hagedorn HJ, Halve S, Isenmann S. et al. Limbic encephalitis due to GABAB and AMPA receptor antibodies: a case series. Journal of neurology, neurosurgery, and psychiatry 2015; 86 (09) 965-72.
  • 47 Hoftberger R, van Sonderen A, Leypoldt F, Houghton D, Geschwind M, Gelfand J. et al. Encephalitis and AMPA receptor antibodies: Novel findings in a case series of 22 patients. Neurology 2015; 84 (24) 2403-12.
  • 48 Lai M, Hughes EG, Peng X, Zhou L, Gleichman AJ, Shu H. et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Annals of neurology 2009; 65 (04) 424-34.
  • 49 Flanagan EP, Hinson SR, Lennon VA, Fang B, Aksamit AJ, Morris PP. et al. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: Analysis of 102 patients. Annals of neurology 2017; 81 (02) 298-309.
  • 50 Fang B, McKeon A, Hinson SR, Kryzer TJ, Pittock SJ, Aksamit AJ. et al. Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy: A Novel Meningoencephalomyelitis. JAMA neurology. 2016 epub..
  • 51 Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clinical and experimental immunology 2014; 176 (02) 149-64.
  • 52 Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004; 364 (9451): 2106-12.
  • 53 Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. The Journal of experimental medicine 2005; 202 (04) 473-7.
  • 54 Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. Journal of neuroinflammation 2016; 13 (01) 280.
  • 55 Kleiter I, Gahlen A, Borisow N, Fischer K, Wernecke KD, Wegner B. et al. Neuromyelitis optica: Evaluation of 871 attacks and 1,153 treatment courses. Annals of neurology 2016; 79 (02) 206-16.
  • 56 Jarius S, Kleiter I, Ruprecht K, Asgari N, Pitarokoili K, Borisow N. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement – frequency, presentation and outcome. Journal of neuroinflammation 2016; 13 (01) 281.
  • 57 Hennes EM, Baumann M, Schanda K, Anlar B, Bajer-Kornek B, Blaschek A. et al. Prognostic relevance of MOG antibodies in children with an acquired demyelinating syndrome. Neurology 2017; 89 (09) 900-8.
  • 58 Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85 (02) 177-89.
  • 59 Flanagan EP, McKeon A, Lennon VA, Kearns J, Weinshenker BG, Krecke KN. et al. Paraneoplastic isolated myelopathy: clinical course and neuroimaging clues. Neurology 2011; 76 (24) 2089-95.
  • 60 Hara M, Arino H, Petit-Pedrol M, Sabater L, Titulaer MJ, Martinez-Hernandez E. et al. DPPX antibody-associated encephalitis: Main syndrome and antibody effects. Neurology 2017; 88 (14) 1340-8.
  • 61 Balint B, Jarius S, Nagel S, Haberkorn U, Probst C, Blocker IM. et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 2014; 82 (17) 1521-8.
  • 62 Tobin WO, Lennon VA, Komorowski L, Probst C, Clardy SL, Aksamit AJ. et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014; 83 (20) 1797-803.
  • 63 Boronat A, Gelfand JM, Gresa-Arribas N, Jeong HY, Walsh M, Roberts K. et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Annals of neurology 2013; 73 (01) 120-8.
  • 64 Piepgras J, Holtje M, Michel K, Li Q, Otto C, Drenckhahn C. et al. Anti-DPPX encephalitis: pathogenic effects of antibodies on gut and brain neurons. Neurology 2015; 85 (10) 890-7.
  • 65 Hutchinson M, Waters P, McHugh J, Gorman G, O’Riordan S, Connolly S. et al. Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 2008; 71 (16) 1291-2.
  • 66 Balint B, Blöcker I, Unger M, Stoecker W, Probst C, Komorowski L. et al. (eds.) Antibody spectrum in stiff person syndrome and related disorders. Movement Disorders. Hoboken: Wiley-Blackwell; 2015
  • 67 Crisp SJ, Balint B, Vincent A. Redefining progressive encephalomyelitis with rigidity and myoclonus after the discovery of antibodies to glycine receptors. Current opinion in neurology 2017; 30 (03) 310-6.
  • 68 Carvajal-Gonzalez A, Leite MI, Waters P, Woodhall M, Coutinho E, Balint B. et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014; 137 (Pt 8): 2178-92.
  • 69 McKeon A, Martinez-Hernandez E, Lancaster E, Matsumoto JY, Harvey RJ, McEvoy KM. et al. Glycine receptor autoimmune spectrum with stiffman syndrome phenotype. JAMA neurology 2013; 70 (01) 44-50.
  • 70 De Camilli P, Thomas A, Cofiell R, Folli F, Lichte B, Piccolo G. et al. The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. The Journal of experimental medicine 1993; 178 (06) 2219-23.
  • 71 Sommer C, Weishaupt A, Brinkhoff J, Biko L, Wessig C, Gold R. et al. Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet 2005; 365 (9468): 1406-11.
  • 72 Geis C, Weishaupt A, Hallermann S, Grunewald B, Wessig C, Wultsch T. et al. Stiff person syndromeassociated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain 2010; 133 (11) 3166-80.
  • 73 Werner C, Pauli M, Doose S, Weishaupt A, Haselmann H, Grunewald B. et al. Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition. Brain : a journal of neurology 2016; 139 (Pt 2): 365-79.
  • 74 Murinson BB, Guarnaccia JB. Stiff-person syndrome with amphiphysin antibodies: distinctive features of a rare disease. Neurology 2008; 71 (24) 1955-8.
  • 75 Pittock SJ, Lucchinetti CF, Parisi JE, Benarroch EE, Mokri B, Stephan CL. et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Annals of neurology 2005; 58 (01) 96-107.
  • 76 Sabater L, Gaig C, Gelpi E, Bataller L, Lewerenz J, Torres-Vega E. et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014; 13 (06) 575-86.
  • 77 Gaig C, Graus F, Compta Y, Hogl B, Bataller L, Bruggemann N. et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017; 88 (18) 1736-43.
  • 78 Schroder JB, Melzer N, Ruck T, Heidbreder A, Kleffner I, Dittrich R. et al. Isolated dysphagia as initial sign of anti-IgLON5 syndrome. Neurology neuroimmunology & neuroinflammation 2017; 04 (01) e302.
  • 79 Honorat JA, Komorowski L, Josephs KA, Fechner K, St Louis EK, Hinson SR. et al. IgLON5 antibody: Neurological accompaniments and outcomes in 20 patients. Neurology neuroimmunology & neuroinflammation 2017; 04 (05) e385.
  • 80 Gelpi E, Hoftberger R, Graus F, Ling H, Holton JL, Dawson T. et al. Neuropathological criteria of antiIgLON5-related tauopathy. Acta neuropathologica. 2016 epub..
  • 81 Montojo T, Piren V, Benkhadra F, Codreanu A, Diederich NJ. Gaze Palsy, Sleep and Gait Disorder, as Well as Tako-Tsubo Syndrome in a Patient with IgLON5 Antibodies. Movement Disorders Clinical Practice. 2016 epub..
  • 82 Simabukuro MM, Sabater L, Adoni T, Cury RG, Haddad MS, Moreira CH. et al. Sleep disorder, chorea, and dementia associated with IgLON5 antibodies. Neurology neuroimmunology & neuroinflammation 2015; 02 (04) e136.
  • 83 Hogl B, Heidbreder A, Santamaria J, Graus F, Poewe W. IgLON5 autoimmunity and abnormal behaviours during sleep. Lancet 2015; 385 (9977): 1590.
  • 84 Hoglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE. et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Movement disorders. 2017 epub..
  • 85 Haitao R, Yingmai Y, Yan H, Fei H, Xia L, Honglin H. et al. Chorea and parkinsonism associated with autoantibodies to IgLON5 and responsive to immunotherapy. Journal of neuroimmunology 2016; 300: 9-10.
  • 86 Sabater L, Planaguma J, Dalmau J, Graus F. Cellular investigations with human antibodies associated with the anti-IgLON5 syndrome. Journal of neuroinflammation 2016; 13 (01) 226.
  • 87 Leypoldt F, Melzer N, Wandinger K-P. Homepage des Deutschen Netzwerks zur Erforschung der autoimmunen Enzephalitis. https://generatenet.de/
  • 88 Balint B, Vincent A, Meinck HM, Irani SR, Bhatia KP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain. 2017 epub..
  • 89 Dahm L, Ott C, Steiner J, Stepniak B, Teegen B, Saschenbrecker S. et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Annals of neurology 2014; 76 (01) 82-94.
  • 90 Angus-Leppan H, Rudge P, Mead S, Collinge J, Vincent A. Autoantibodies in sporadic Creutzfeldt-Jakob disease. JAMA neurology 2013; 70 (07) 919-22.
  • 91 Probst C, Saschenbrecker S, Stoecker W, Komorowski L. Anti-neuronal autoantibodies: Current diagnostic challenges. Multiple sclerosis and related disorders 2014; 03 (03) 303-20.
  • 92 Waters P, Reindl M, Saiz A, Schanda K, Tuller F, Kral V. et al. Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. Journal of neurology, neurosurgery, and psychiatry. 2016 epub..
  • 93 Gresa-Arribas N, Titulaer MJ, Torrents A, Aguilar E, McCracken L, Leypoldt F. et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. The Lancet Neurology 2014; 13 (02) 167-77.
  • 94 Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. Journal of neuroinflammation 2016; 13 (01) 279.
  • 95 Jarius S, Franciotta D, Paul F, Ruprecht K, Bergamaschi R, Rommer PS. et al. Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance. Journal of neuroinflammation 2010; 07: 52.
  • 96 Jarius S, Stich O, Speck J, Rasiah C, Wildemann B, Meinck HM. et al. Qualitative and quantitative evidence of anti-glutamic acid decarboxylase-specific intrathecal antibody synthesis in patients with stiff person syndrome. Journal of neuroimmunology 2010; 229 (1–2): 219-24.