Zeitschrift für Phytotherapie 2015; 36(04): 164-170
DOI: 10.1055/s-0041-104579
forschung
© Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Detektion von Arabinogalaktan-Proteinen (AGPs) in der Heilpflanze Echinacea purpurea mittels Immunfluoreszenz

Esther Marie Heise
,
Andreas Bossy
,
Jean-Christian Gramann
,
Birgit Classen
Further Information

Publication History

Publication Date:
15 October 2015 (online)

Zusammenfassung

Fertigarzneimittel aus dem Roten Sonnenhut werden als unspezifische Immunstimulanzien verwendet, wobei Hinweise bestehen, dass hochmolekulare AGPs an der Wirkung beteiligt sind. Strukturell gehören die AGPs aus Kraut und Wurzel von Echinacea purpurea zu den klassischen AGPs mit Typ-II-Arabinogalaktan-Einheiten. Eine neu entwickelte Methode der Immunfluoreszenz ermöglicht es, AGPs im pflanzlichen Gewebe zu detektieren. Sowohl in der Wurzel als auch in oberirdischen Teilen von Echinacea purpurea finden sich diese Glykoproteine v.a. in den Leitbündeln der Zentralzylinder und dort hauptsächlich im Bereich der Wasserleitbahnen (Xylem). Die höchsten Konzentrationen an AGPs zeigen sich in den Zellwänden der Tracheiden und Tracheen sowie im Bereich der Tüpfelkanäle, welche benachbarte Wasserleitbahnen miteinander verbinden. In der Pflanze scheinen AGPs an der Entwicklung der wasserleitenden Zellen beteiligt zu sein.

Summary

Arabinogalactan-proteins (AGPs) in the medicinal plant Echinacea purpurea

Echinacea products are used as unspecific immunostimulants and contain high molecular weight arabinogalactan-proteins, which possibly are involved in the immunomodulating effects. These AGPs from root and aerial parts of Echinacea purpurea are classical arabinogalactan-proteins with type II arabinogalactans. For microscopic localization of different arabinogalactan-proteins in plant tissue, we developed a new method using immunofluorescence. Arabinogalactan-proteins were found in higher concentrations in the vascular bundles of the central cylinder of roots and aerial parts, especially in the area of the xylem. The most intense labelling was found in the cell walls of fully differentiated vessels and tracheids as well as in the cell wall area of the pit canals connecting adjacent vessels. In the plant, arabinogalactan proteins play a role in the development of the xylematic tissue.

 
  • Literatur

  • 1 Alban S, Classen B, Brunner G et al. Differentiation between the complement modulating effects of an arabinogalactan-protein from Echinacea purpurea and heparin. Planta Med 2002; 68: 1118-1124
  • 2 Bacic A, Currie G, Gilson P et al. Structural classes of arabinogalactan-proteins. In: Nothnagel EA, Bacic A, Clarke AE, eds. Cell and developmental biology of arabinogalactan-proteins. Dordrecht: Kluwer; 2000: 11-23
  • 3 Barnes J, Anderson LA, Gibbons S et al. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): A review of their chemistry, pharmacology and clinical properties. J Pharm Pharmacol 2005; 57: 929-954
  • 4 Blakeney AB, Harris PJ, Henry RJ et al. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 1983; 113: 291-299
  • 5 Bossy A, Blaschek W, Classen B. Characterization and immunolocalization of arabinogalactan-proteins in roots of Echinacea purpurea . Planta Med 2009; 75: 1526-1533
  • 6 Chaves I, Regalado AP, Chen M et al. Programmed cell death induced by (β-D-galactosyl)3 Yariv reagent in Nicotiana tabacum BY-2 suspension-cultured cells. Physiol Plant 2002; 116: 548-553
  • 7 Classen B, Blaschek W. Arabinogalaktan-Proteine (AGPs) aus dem stabilisierten Presssaft von Echinacea purpurea (L.) Moench. Analytische Untersuchungen am Fertigarzneimittel Echinacin®. Z Phytother 2009; 30: 65-68
  • 8 Classen B. Characterization of an arabinogalactan-protein from suspension-culture of Echinacea purpurea . Plant Cell Tissue Organ Cult 2007; 88: 267-275
  • 9 Classen B, Thude S, Blaschek W et al. Immunomodulatory effects of arabinogalactan-proteins from Baptisia and Echinacea . Phytomedicine 2006; 13: 688-694
  • 10 Dahiya P, Findlay K, Roberts K et al. A fasciclin-domain containing gene, ZeFLA11, is expressed exclusively in xylem elements that have reticulate wall thickenings in the stem vascular system of Zinnia elegans cv Envy. Planta 2006; 223: 1281-1291
  • 11 Driouich A, Baskin TI. Intercourse between cell wall and cytoplasm exemplified by arabinogalactan proteins and cortical microtubules. Am J Bot 2008; 95: 1491-1497
  • 12 Ellis M, Egelund J, Schultz CJ et al. Arabinogalactan-proteins: Key regulators at the cell surface?. Plant Physiol 2010; 153: 403-419
  • 13 Girault R, His I Andeme-Onzighi C et al. Identification and partial characterization of proteins and proteoglycans encrusting the secondary cell walls of flax fibres. Planta 2000; 211: 256-264
  • 14 Goellner EM, Blaschek W, Classen B. Characterization of a Yariv precipitated arabinogalactan-protein from fruits of rye (Secale cereale L.). Pharmazie 2013; 68: 631-635
  • 15 Göllner EM, Gramann JC, Classen B. Antibodies against Yariv’s reagent for immunolocalization of arabinogalactan-proteins in aerial parts of Echinacea purpurea . Planta Med 2013; 79: 175-180
  • 16 Harris PJ, Henry RJ, Blakeney AB et al. An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr Res 1984; 127: 59-73
  • 17 Hu Y, Qin Y, Zhao J. Localization of an arabinogalactan protein epitope and the effects of Yariv phenylglycoside during zygotic embryo development of Arabidopsis thaliana . Protoplasma 2006; 229: 21-31
  • 18 Kitazawa K, Tryfona T, Yoshimi Y et al. β-galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins. Plant Physiol 2013; 161: 1117-1126
  • 19 Kiyohara H, Uchida T, Takakiwa M et al. Different contributions of side-chains in β-D-(1→3,6)-galactans on intestinal Peyer’s patch-immunomodulation by polysaccharides from Astragalus mongholics Bunge. Phytochemistry 2010; 71: 280-293
  • 20 Knox JP. The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int Rev Cytol 1997; 171: 79-120
  • 21 Lee K, Sakata Y, Mau S et al. Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens . Plant Cell 2005; 17: 3051-3065
  • 22 Liu C, Mehdy MC. A nonclassical arabinogalactan protein gene highly expressed in vascular tissues, AGP31, is transcriptionally repressed by methyl jasmonic acid in Arabidopsis. Plant Physiol 2007; 145: 863-874
  • 23 Mollard A, Joseleau JP. Acacia senegal cells cultured in suspension secrete a hydroxyproline-deficient arabinogalactan protein. Plant Physiol Biochem 1994; 32: 703-709
  • 24 Motose H, Sugiyama M, Fukuda H. A proteoglycan mediates inductive interaction during plant vascular development. Nature 2004; 429: 873-878
  • 25 Osman ME, Menzies AR, Albo MB et al. Characterization of gum arabic fractions obtained by anion-exchange chromatography. Phytochemistry 1995; 38: 409-417
  • 26 Pickard BG. Arabinogalactan proteins − becoming less mysterious. New Phytologist 2013; 197: 3-5
  • 27 Putoczki TL, Pettolino F, Griffin MDW et al. Characterization of the structure, expression and function of Pinus radiata D. Don arabinogalactan-proteins. Planta 2007; 226: 1131-1142
  • 28 Seifert GJ, Roberts K. The biology of arabinogalactan proteins. Ann Rev Plant Biol 2007; 58: 137-161
  • 29 Showalter AM. Arabinogalactan-proteins: Structure, expression and function. Cell Mol Life Sci 2001; 58: 1399-1417
  • 30 Taylor RL, Conrad HE. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl group. Biochemistry 1972; 11: 1383-1388
  • 31 Thude S, Classen B, Blaschek W et al. Binding studies of an arabinogalactan-protein from Echinacea purpurea to leucocytes. Phytomedicine 2006; 13: 425-427
  • 32 Thude S, Classen B. High molecular weight constituents from roots of Echinacea pallida: An arabinogalactan-protein and an arabinan. Phytochemistry 2005; 66: 1026-1032
  • 33 Willats W, McCartney L, Mackie W et al. Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 2001; 47: 9-27
  • 34 Yang SH, Wang H, Sathyan P et al. Real-time RT-PCR analysis of loblolly pine (Pinus taeda) arabinogalactan protein and arabinogalactan protein-like genes. Physiol Plant 2005; 124: 91-106
  • 35 Yariv J, Rapport MM, Graf L. Interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem J 1962; 85: 383-388
  • 36 Zhang Y, Brown G, Whetten R et al. An arabinogalactan protein associated with secondary cell wall formation in differentiating xylem of loblolly pine. Plant Mol Biol 2003; 52: 91-102