Semin Plast Surg 2021; 35(03): 198-203
DOI: 10.1055/s-0041-1732334
Review Article

Bone Healing and Inflammation: Principles of Fracture and Repair

Hassan ElHawary
1   Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
,
Aslan Baradaran
1   Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
,
Jad Abi-Rafeh
1   Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
,
Joshua Vorstenbosch
1   Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
,
Liqin Xu
1   Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
,
Johnny Ionut Efanov
2   Division of Plastic and Reconstructive Surgery, Centre Hospitalier de l'Université de Montréal, Quebec, Canada
› Author Affiliations
Funding None of the authors has a financial interest in any of the products, devices, or drugs mentioned in this manuscript.

Abstract

Bones comprise a significant percentage of human weight and have important physiologic and structural roles. Bone remodeling occurs when healthy bone is renewed to maintain bone strength and maintain calcium and phosphate homeostasis. It proceeds through four phases: (1) cell activation, (2) resorption, (3) reversal, and (4) bone formation. Bone healing, on the other hand, involves rebuilding bone following a fracture. There are two main types of bone healing, primary and secondary. Inflammation plays an integral role in both bone remodeling and healing. Therefore, a tightly regulated inflammatory response helps achieve these two processes, and levels of inflammation can have detrimental effects on bone healing. Other factors that significantly affect bone healing are inadequate blood supply, biomechanical instability, immunosuppression, and smoking. By understanding the different mechanisms of bone healing and the factors that affect them, we may have a better understanding of the underlying principles of bony fixation and thereby improve patient care.



Publication History

Article published online:
10 September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Amin S, Achenbach SJ, Atkinson EJ, Khosla S, Melton III LJ. Trends in fracture incidence: a population-based study over 20 years. J Bone Miner Res 2014; 29 (03) 581-589
  • 2 Bergh C, Wennergren D, Möller M, Brisby H. Fracture incidence in adults in relation to age and gender: a study of 27,169 fractures in the Swedish Fracture Register in a well-defined catchment area. PLoS One 2020; 15 (12) e0244291
  • 3 Abtahi S, Driessen JH, Vestergaard P. et al. Secular trends in major osteoporotic fractures among 50+ adults in Denmark between 1995 and 2010 (retraction of Vol 13, art no 91, 2018). Arch Osteoporos 2019; 14 (01) 91
  • 4 Christensen L, Iqbal S, Macarios D, Badamgarav E, Harley C. Cost of fractures commonly associated with osteoporosis in a managed-care population. J Med Econ 2010; 13 (02) 302-31
  • 5 Leslie WD, Metge CJ, Azimaee M. et al. Direct costs of fractures in Canada and trends 1996-2006: a population-based cost-of-illness analysis. J Bone Miner Res 2011; 26 (10) 2419-2429
  • 6 Katsoulis M, Benetou V, Karapetyan T. et al. Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med 2017; 281 (03) 300-310
  • 7 Kim JN, Lee JY, Shin KJ, Gil YC, Koh KS, Song WC. Haversian system of compact bone and comparison between endosteal and periosteal sides using three-dimensional reconstruction in rat. Anat Cell Biol 2015; 48 (04) 258-261
  • 8 Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008; 3 (Suppl. 03) S131-S139
  • 9 Office of the Surgeon General (US). Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville (MD): Office of the Surgeon General (US); 2004
  • 10 Young MF. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int 2003; 14 (Suppl. 03) S35-S42
  • 11 Zhao W, Byrne MH, Wang Y, Krane SM. Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J Clin Invest 2000; 106 (08) 941-949
  • 12 Green J, Schotland S, Stauber DJ, Kleeman CR, Clemens TL. Cell-matrix interaction in bone: type I collagen modulates signal transduction in osteoblast-like cells. Am J Physiol 1995; 268 (5, pt 1): C1090-C1103
  • 13 Lynch MP, Stein JL, Stein GS, Lian JB. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res 1995; 216 (01) 35-45
  • 14 Waddington RJ, Roberts HC, Sugars RV, Schönherr E. Differential roles for small leucine-rich proteoglycans in bone formation. Eur Cell Mater 2003; 6: 12-21 , discussion 21
  • 15 Bonewald LF, Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res 1990; (250) 261-276
  • 16 Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 2008; 29 (05) 535-559
  • 17 Frost HMA. A 2003 update of bone physiology and Wolff's law for clinicians. Angle Orthod 2004; 74 (01) 3-15
  • 18 Plochocki JH, Rivera JP, Zhang C, Ebba SA. Bone modeling response to voluntary exercise in the hindlimb of mice. J Morphol 2008; 269 (03) 313-318
  • 19 Roodman GD. Cell biology of the osteoclast. Exp Hematol 1999; 27 (08) 1229-1241
  • 20 Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423 (6937): 337-342
  • 21 Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 2005; 11 (02) 76-81
  • 22 Anderson HC. Matrix vesicles and calcification. Curr Rheumatol Rep 2003; 5 (03) 222-226
  • 23 Kaderly RE. Primary bone healing. Semin Vet Med Surg (Small Anim) 1991; 6 (01) 21-25
  • 24 Greenbaum MA, Kanat IO. Current concepts in bone healing. Review of the literature. J Am Podiatr Med Assoc 1993; 83 (03) 123-129
  • 25 Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998; (355, suppl): S7-S21
  • 26 Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003; 88 (05) 873-884
  • 27 Granero-Moltó F, Weis JA, Miga MI. et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 2009; 27 (08) 1887-1898
  • 28 Breur GJ, VanEnkevort BA, Farnum CE, Wilsman NJ. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J Orthop Res 1991; 9 (03) 348-359
  • 29 Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 2008; 87 (02) 107-118
  • 30 Reikerås O, Shegarfi H, Wang JE, Utvåg SE. Lipopolysaccharide impairs fracture healing: an experimental study in rats. Acta Orthop 2005; 76 (06) 749-753
  • 31 Toben D, Schroeder I, El Khassawna T. et al. Fracture healing is accelerated in the absence of the adaptive immune system. J Bone Miner Res 2011; 26 (01) 113-124
  • 32 Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 2012; 8 (03) 133-143
  • 33 Giannoudis PV, MacDonald DA, Matthews SJ, Smith RM, Furlong AJ, De Boer P. Nonunion of the femoral diaphysis. The influence of reaming and non-steroidal anti-inflammatory drugs. J Bone Joint Surg Br 2000; 82 (05) 655-658
  • 34 Pountos I, Georgouli T, Calori GM, Giannoudis PV. Do nonsteroidal anti-inflammatory drugs affect bone healing? A critical analysis. ScientificWorldJournal 2012; 2012: 606404
  • 35 Wheatley BM, Nappo KE, Christensen DL, Holman AM, Brooks DI, Potter BK. Effect of NSAIDs on bone healing rates: a meta-analysis. J Am Acad Orthop Surg 2019; 27 (07) e330-e336
  • 36 Hak DJ, Fitzpatrick D, Bishop JA. et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury 2014; 45 (Suppl. 02) S3-S7
  • 37 Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 2006; 37 (Suppl. 02) S59-S66
  • 38 Croes M, van der Wal BCH, Vogely HC. Impact of bacterial infections on osteogenesis: evidence from in vivo studies. J Orthop Res 2019; 37 (10) 2067-2076
  • 39 Fritz JM, McDonald JR. Osteomyelitis: approach to diagnosis and treatment. Phys Sportsmed 2008; 36 (01) a116823
  • 40 Lee YJ, Sadigh S, Mankad K, Kapse N, Rajeswaran G. The imaging of osteomyelitis. Quant Imaging Med Surg 2016; 6 (02) 184-198
  • 41 Lew DP, Waldvogel FA. Osteomyelitis. N Engl J Med 1997; 336 (14) 999-1007
  • 42 Cortés-Penfield NW, Kulkarni PA. The history of antibiotic treatment of osteomyelitis. Open Forum Infect Dis 2019; 6 (05) ofz181
  • 43 Buckley R, Moran C, Apivatthakakul T. AO Principles of Fracture Management. Available at: https://www.scribbr.com/apa-examples/website/ https://pfxm3.aoeducation.org/start.html. Accessed July 19, 2021
  • 44 Mukhopadhaya J, Jain AK. AO principles of fracture management. Indian J Orthop 2019; 53 (01) 217-218
  • 45 Cunningham BP, Brazina S, Morshed S, Miclau III T. Fracture healing: a review of clinical, imaging and laboratory diagnostic options. Injury 2017; 48 (Suppl. 01) S69-S75
  • 46 Klotch DW, Gilliland R. Internal fixation vs. conventional therapy in midface fractures. J Trauma 1987; 27 (10) 1136-1145
  • 47 Patel RA, Wilson RF, Patel PA, Palmer RM. The effect of smoking on bone healing: a systematic review. Bone Joint Res 2013; 2 (06) 102-111
  • 48 Sloan A, Hussain I, Maqsood M, Eremin O, El-Sheemy M. The effects of smoking on fracture healing. Surgeon 2010; 8 (02) 111-116
  • 49 Clark D, Nakamura M, Miclau T, Marcucio R. Effects of aging on fracture healing. Curr Osteoporos Rep 2017; 15 (06) 601-608
  • 50 Meesters DM, Wijnands KAP, Brink PRG, Poeze M. Malnutrition and fracture healing: are specific deficiencies in amino acids important in nonunion development?. Nutrients 2018; 10 (11) E1597
  • 51 Gao F, Lv TR, Zhou JC, Qin XD. Effects of obesity on the healing of bone fracture in mice. J Orthop Surg Res 2018; 13 (01) 145
  • 52 Thorud JC, Mortensen S, Thorud JL, Shibuya N, Maldonado YM, Jupiter DC. Effect of obesity on bone healing after foot and ankle long bone fractures. J Foot Ankle Surg 2017; 56 (02) 258-262
  • 53 Liu YZ, Akhter MP, Gao X. et al. Glucocorticoid-induced delayed fracture healing and impaired bone biomechanical properties in mice. Clin Interv Aging 2018; 13: 1465-1474
  • 54 Victoria G, Petrisor B, Drew B, Dick D. Bone stimulation for fracture healing: what's all the fuss?. Indian J Orthop 2009; 43 (02) 117-120
  • 55 Rutten S, van den Bekerom MP, Sierevelt IN, Nolte PA. Enhancement of bone-healing by low-intensity pulsed ultrasound: a systematic review. JBJS Rev 2016; 4 (03) 01874474 -201603000-00006
  • 56 Schandelmaier S, Kaushal A, Lytvyn L. et al. Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials. BMJ 2017; 356: j656
  • 57 Griffin M, Bayat A. Electrical stimulation in bone healing: critical analysis by evaluating levels of evidence. Eplasty 2011; 11: e34
  • 58 Kuzyk PR, Schemitsch EH. The science of electrical stimulation therapy for fracture healing. Indian J Orthop 2009; 43 (02) 127-131
  • 59 Poolman RW, Agoritsas T, Siemieniuk RA. et al. Low intensity pulsed ultrasound (LIPUS) for bone healing: a clinical practice guideline. BMJ 2017; 356: j576