Synthesis 2024; 56(01): 87-106
DOI: 10.1055/s-0042-1751446
special topic
Advances in Skeletal Editing and Rearrangement Reactions

Recent Applications of Ammonium Ylide Based [2,3]-Sigmatropic and [1,2]-Stevens Rearrangements To Transform Amines into Natural Products

Zachary Schwartz
,
Chelsea Valiton
,
Myles Lovasz
,
We are grateful for financial support from the University of Utah Department of Chemistry and the Donors of the American Chemical Society Petroleum Research Fund (ACS PRF 62220-DNI1).


Abstract

Ammonium ylide based [2,3]-sigmatropic and [1,2]-Stevens rearrangements enable the transformation of tertiary amines into rearranged and functionalized intermediates en route to many polycyclic natural product targets. Herein, we summarize recent applications of these rearrangement reactions in formal and total synthesis endeavors while highlighting innovative improvements to these transforms.

1 Introduction

2 Ammonium Ylide Based [2,3]-Sigmatropic Rearrangements in Natural Product Synthesis

2.1 (–)-Cephalotaxine

2.2 (±)-Amathaspiramide F

2.3 (–)-Cephalezomine G and Its C3 Epimer

2.4 (±)-Strictamine

2.5 (–)-Doxycycline

3 [1,2]-Stevens Rearrangements Toward Natural Products

3.1 Ring-Expanding [1,2]-Stevens Rearrangements en route to (±)-Tylophorine, (±)-7-Methoxycryptopleurine, and (±)-Xylopinine

3.2 Enantioselective Synthesis of Iboga Alkaloids and (+)-Vinblastine

4 Selected Methodology

4.1 Ammonium Ylide Based [2,3]-Sigmatropic Rearrangements To Form Natural Product Cores

4.2 Cascade Reactions Involving [1,2]-Stevens Rearrangement/ Hofmann-Type Elimination Events

5 Conclusions



Publication History

Received: 05 February 2023

Accepted after revision: 23 March 2023

Article published online:
04 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Stevens TS, Creighton EM, Gordon AB, MacNicol M. J. Chem. Soc. 1928; 3193
  • 2 Pine SH. Org. React. 1970; 18: 403
  • 3 Coldham I. In Comprehensive Organic Functional Group Transformations . Katritzky AR, Meth-Cohn O, Rees CW. Elsevier Science; Oxford: 1995: 377
  • 4 Vanecko JA, Wan H, West FG. Tetrahedron 2006; 62: 1043
  • 5 Roiser L, Zielke K, Waser M. Asian J. Org. Chem. 2018; 7: 852
  • 6 Wu X, Ma Z, Feng T, Zhu C. Chem. Soc. Rev. 2021; 50: 11577
  • 7 Empel C, Jana S, Koenigs RM. Synthesis 2021; 53: 4567
  • 8 Thomson T, Stevens TS. J. Chem. Soc. 1932; 55
  • 9 Stevens TS. J. Chem. Soc. 1930; 2107
  • 10 Brewster JH, Kline MW. J. Am. Chem. Soc. 1952; 74: 5179
  • 11 Baidilov D. Synthesis 2020; 52: 21
  • 12 Kaiser GV, Ashbrook CW, Baldwin JE. J. Am. Chem. Soc. 1971; 93: 2342
  • 13 West TH, Spoehrle SS. M, Kasten K, Taylor JE, Smith AD. ACS Catal. 2015; 5: 7446
  • 14 Sheng Z, Zhang Z, Chu C, Zhang Y, Wang J. Tetrahedron 2017; 73: 4011
  • 15 Roy T, Thangaraj M, Kaicharla T, Kamath RV, Gonnade RG, Biju AT. Org. Lett. 2016; 18: 5428
  • 16 Tayama E. Chem. Rec. 2015; 15: 789
  • 17 Wilson RM, Danishefsky SJ. J. Org. Chem. 2007; 72: 4293
  • 18 Kantarjian HM, Talpaz M, Santini V, Murgo A, Cheson B, O’Brien SM. Cancer 2001; 92: 1591
  • 19 Beall LS, Padwa A. Tetrahedron Lett. 1998; 39: 4159
  • 20 Li W.-DZ, Wang Y.-Q. Org. Lett. 2003; 5: 2931
    • 21a Bott TM, Vanecko JA, West FG. J. Org. Chem. 2009; 74: 2832
    • 21b Bhat C, Tilve SG. RSC Adv. 2014; 4: 5405
  • 22 Yasuda S, Yamada T, Hanaoka M. Tetrahedron Lett. 1986; 27: 2023
  • 23 Li W.-DZ, Wang X.-W. Org. Lett. 2007; 9: 1211
  • 24 Sun M, Lu H, Wang Y, Yang H, Liu H. J. Org. Chem. 2009; 74: 2213
  • 25 Liu J, Zhang J, Fan Y, Ding H, Liu T, Li S, Jiang M, Liu L. Org. Biomol. Chem. 2022; 20: 1879
  • 26 Isono N, Mori M. J. Org. Chem. 1995; 60: 115
  • 27 Siitonen JH, Yu L, Danielsson J, Di Gregorio G, Somfai P. J. Org. Chem. 2018; 83: 11318
  • 28 Taniguchi T, Ishibashi H. Org. Lett. 2008; 10: 4129
  • 29 Tuzina P, Somfai P. Org. Lett. 2009; 11: 919
  • 30 Morris BD, Prinsep MR. J. Nat. Prod. 1999; 62: 688
  • 31 Hameed A, Al-Rashida M, Shah MR. Amathaspiramides A–F . In α-Tertiary Amines en Route to Natural Products, Chap. 3. Hameed A, Al-Rashida M, Shah MR. Visual Guides to Natural Product Synthesis Series; Elsevier; Amsterdam: 2021: 11-18
  • 32 Soheili A, Tambar UK. J. Am. Chem. Soc. 2011; 133: 12956
  • 33 Soheili A, Tambar UK. Org. Lett. 2013; 15: 5138
  • 34 Workman JA, Garrido NP, Sançon J, Roberts E, Wessel HP, Sweeney JB. J. Am. Chem. Soc. 2005; 127: 1066
  • 35 Sakaguchi K, Ayabe M, Watanabe Y, Okada T, Kawamura K, Shiada T, Ohfune Y. Org. Lett. 2008; 10: 5449
  • 36 Zhao H, Pan H, Yao Y, Huang J, Chen Y. Synthesis 2022; 54: 3317
  • 37 Taniguchi T, Yokoyama S, Ishibashi H. J. Org. Chem. 2009; 74: 7592
  • 38 Jeon H, Cho H, Kim S. Org. Lett. 2019; 21: 1121
  • 39 Dunbar CR, West FG. Can. J. Chem. 2015; 93: 468
  • 40 Cho H, Shin JE, Lee S, Jeon H, Park S, Kim S. Org. Lett. 2018; 20: 6121
  • 41 Ezeamuzie IC, Ojinnaka MC, Uzogara EO, Oji SE. Afr. J. Med. Med. Sci. 1994; 23: 85
  • 42 Henry TA, Sharp TM. J. Chem. Soc. 1927; 1950
  • 43 Schnoes HK, Biemann K, Mokry J, Kompis I, Chatterjee A, Ganguli G. J. Org. Chem. 1966; 31: 1641
  • 44 Hou Y, Cao X, Wang L, Cheng B, Dong L, Luo X, Bai G, Gao W. J. Chromatogr. B 2012; 908: 98
  • 45 Wang C, Zhang S, Wang Y, Huang S.-H, Hong R. Org. Chem. Front. 2018; 5: 447
  • 46 Eckermann R, Breunig M, Gaich T. Chem. Commun. 2016; 52: 11363
  • 47 Eckermann R, Breunig M, Gaich T. Chem. Eur. J. 2017; 23: 3938
  • 48 Ren W, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 3500
  • 49 Charest MG, Lerner CD, Brubaker JD, Siegel DR, Myers AG. Science 2005; 308: 395
  • 50 Hoye TR, Jeffrey CS, Nelson DP. Org. Lett. 2010; 12: 52
  • 51 Stork G, Hagedorn AA. I. J. Am. Chem. Soc. 1978; 100: 3609
  • 52 Chopra RN, Chakerburty M. Indian J. Med. Res. 1935; 23: 263
  • 53 Brill HC, Wells AH. Philipp. J. Sci. 1917; 12: 16
  • 54 Ratnagiriswaran AN, Venkatachalam K. Indian J. Med. Res. 1935; 22: 433
  • 55 Lahm G, Stoye A, Opatz T. J. Org. Chem. 2012; 77: 6620
  • 56 Yang CW, Lee YZ, Hsu HY, Jan JT, Lin YL, Chang SY, Peng TT, Yang RB, Liang JJ, Liao CC, Chao TL, Pang YH, Kao HC, Huang WZ, Lin JH, Chang CP, Niu GH, Wu SH, Sytwu HK, Chen CT, Lee SJ. Front. Pharmacol. 2020; 11: 606097
  • 57 Yadav M, Dwivedi P, Singh P, Singh VK. Indian J. Plant Physiol. 2010; 15: 297
  • 58 Govindachari TR, Lakshmikantham MV, Rajadurai S. Tetrahedron 1961; 14: 284
  • 59 Ihara M, Takino Y, Fukumoto K, Kametani T. Heterocycles 1989; 28: 63
  • 60 Wang K.-L, Lü M.-Y, Wang Q.-M, Huang R.-Q. Tetrahedron 2008; 64: 7504
  • 61 Zeng W, Chemler SR. J. Org. Chem. 2008; 73: 6045
  • 62 Rossiter LM, Slater ML, Giessert RE, Sakwa SA, Herr RJ. J. Org. Chem. 2009; 74: 9554
  • 63 Wang K, Su B, Wang Z, Wu M, Li Z, Hu Y, Fan Z, Mi N, Wang Q. J. Agric. Food Chem. 2010; 58: 2703
  • 64 Yang XM, Shi Q, Bastow KF, Lee KH. Org. Lett. 2010; 12: 1416
  • 65 Niphakis MJ, Georg GI. Org. Lett. 2011; 13: 196
  • 66 Hsu S.-F, Ko C.-W, Wu Y.-T. Adv. Synth. Catal. 2011; 353: 1756
  • 67 Lin Q.-X, Ho T.-L. Tetrahedron 2013; 69: 2996
  • 69 Pacheco JC. O, Lahm G, Opatz T. J. Org. Chem. 2013; 78: 4985
  • 70 Jenks CW. Nat. Prod. Lett. 2002; 16: 71
  • 71 Zhang Y, Xue Y, Li G, Yuan H, Luo T. Chem. Sci. 2016; 7: 5530
  • 72 Trost BM, Godleski SA, Genet JP. J. Am. Chem. Soc. 1978; 100: 3930
  • 73 White JD, Choi Y. Org. Lett. 2000; 2: 2373
  • 74 Mizoguchi H, Oikawa H, Oguri H. Nat. Chem. 2014; 6: 57
  • 75 Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
  • 76 McNally A, Evans B, Gaunt MJ. Angew. Chem. Int. Ed. 2006; 45: 2116
  • 77 Hanessian S, Mauduit M. Angew. Chem. Int. Ed. 2001; 40: 3810
  • 78 Büchi G, Kulsa P, Ogasawara K, Rosati RL. J. Am. Chem. Soc. 1970; 92: 999
  • 79 Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL. J. Am. Chem. Soc. 2009; 131: 4904
  • 80 Michael JP. Nat. Prod. Rep. 2008; 25: 166
  • 81 Xi S, Jiang Y, Yang J, Yang J, Miao D, Chen B, Huang W, He L, Qiu H, Zhang M. Org. Lett. 2022; 24: 6957
  • 82 Xi S, Dong J, Chen H, Dong Q, Yang J, Tan Q, Zhang C, Lan Y, Zhang M. Sci. Adv. 2021; 7: eabd5290
  • 83 Luo XK, Cai J, Yin ZY, Luo P, Li CJ, Ma H, Seeram NP, Gu Q, Xu J. Org. Lett. 2018; 20: 991
  • 84 Bringmann G, Menche D. Acc. Chem. Res. 2001; 34: 615
  • 85 Valpuesta M, Ariza M, Díaz A, Suau R. Eur. J. Org. Chem. 2010; 2010: 4393
  • 86 Bringmann G, Pabst T, Henschel P, Michel M. Tetrahedron 2001; 57: 1269
  • 87 Fukuyama Y, Asakawa Y. J. Chem. Soc., Perkin Trans. 1 1991; 2737
  • 88 Sun J, Yang H, Tang W. Chem. Soc. Rev. 2021; 50: 2320
  • 89 Joshua H, Gans R, Mislow K. J. Am. Chem. Soc. 1968; 90: 4884
  • 90 Nwachukwu CI, McFadden TP, Roberts AG. J. Org. Chem. 2020; 85: 9979
  • 91 Kennedy SH, Dherange BD, Berger KJ, Levin MD. Nature 2021; 593: 223
  • 92 Holovach S, Melnykov KP, Poroshyn I, Iminov RT, Dudenko D, Kondratov I, Levin M, Grygorenko OO. Chem. Eur. J. 2023; 29: e202203470
  • 93 Qin H, Cai W, Wang S, Guo T, Li G, Lu H. Angew. Chem. Int. Ed. 2021; 60: 20678
  • 94 Hui C, Brieger L, Strohmann C, Antonchick AP. J. Am. Chem. Soc. 2021; 143: 18864
  • 95 Hui C, Wang Z, Wang S, Xu C. Org. Chem. Front. 2022; 9: 1451
  • 96 Xu C, Bhaskara Rao VU, Chen F.-E. Green Synth. Catal. 2022; 3: 1
  • 97 McFadden TP, Nwachukwu CI, Roberts AG. Org. Biomol. Chem. 2022; 20: 1379
  • 98 Stara IG, Stary I, Tichy M, Zavada J, Hanus V. J. Am. Chem. Soc. 1994; 116: 5084
  • 99 Gonçalves-Farbos M.-H, Vial L, Lacour J. Chem. Commun. 2008; 829
  • 100 Maruoka K. Tetrahedron Lett. 2022; 110: 154159
  • 101 Liang H, Li Z, Liu Y, Murayama S, Naka H, Maruoka K. Tetrahedron Lett. 2022; 96: 153753
  • 102 Johnstone RA. W, Stevens TS. J. Chem. Soc. 1960; 3346
  • 103 Miller DC, Lal RG, Marchetti LA, Arnold FH. J. Am. Chem. Soc. 2022; 144: 4739