Subscribe to RSS
DOI: 10.1055/s-0042-1751503
Direct Reductive Coupling of Nitro Compounds for the Synthesis of Advanced Amines
This work was supported by the National Natural Science Foundation of China (22001269) and the Natural Science Foundation of Guangdong Province (2022A1515010597, 2023A1515030244).
Dedicated to the 20th anniversary of the School of Pharmaceutical Sciences, Sun Yat-sen University.
Abstract
Direct reductive coupling of nitro compounds with C-coupling partners is an atom- and step-economical strategy to access polyfunctional advanced amines. Due to the extremely complex process involved in the reduction of nitro compounds and the high reactivity of N,O-intermediates, few reliable methodologies have been reported for the reductive coupling of nitro compounds since the initial studies. To address this significant challenge, numerous endeavors have been devoted to this important area over the past hundred years. In this short review, we summarize recent advances in this domain and discuss the mechanisms of these appealing reductive coupling transformations.
1 Introduction
2 Reductive Coupling of Nitro Compounds with Organometallic Reagents
3 Reductive Coupling of Nitro Compounds with Arylboronic Acids
4 Reductive Coupling of Nitro Compounds with Alkenes
5 Reductive Coupling of Nitro Compounds with Alkyl/Aryl Halides
6 Reductive Coupling of Nitro Compounds with Alcohols and Their Derivatives
7 Conclusion
Key words
reductive coupling - nitro compounds - advanced amines - organometallic reagents - boronic acids - alkenes - alkyl/aryl halides - alcoholsPublication History
Received: 28 July 2023
Accepted after revision: 29 August 2023
Article published online:
17 October 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lawrence SA. Amines: Synthesis, Properties and Applications . Cambridge University Press; Cambridge: 2004
- 2 Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008
- 3 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 4 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 5 Afanasyev OI, Kuchuk E, Usanov DL, Chusov D. Chem. Rev. 2019; 119: 11857
- 6 Irrgang T, Kempe R. Chem. Rev. 2020; 120: 9583
- 7 Corpet M, Gosmini C. Synthesis 2014; 46: 2258
- 8 Guillena G, Ramón DJ, Yus M. Chem. Rev. 2010; 110: 1611
- 9 Zhu H, Driver TG. Synthesis 2022; 54: 3142
- 10 Hengartner U, Batcho AD, Blount JF, Leimgruber W, Larscheid ME, Scott JW. J. Org. Chem. 1979; 44: 3748
- 11 Bartoli G, Dalpozzo R, Nardi M. Chem. Soc. Rev. 2014; 43: 4728
- 12 Kaur M, Kumar R. ChemistrySelect 2018; 3: 5330
- 13 Kaur M, Kumar R. Asian J. Org. Chem. 2022; 11: e202200092
- 14 Ferretti F, Ramadan DR, Ragaini F. ChemCatChem 2019; 11: 4450
- 15 Gao Y, Yang S, Huo Y, Hu X.-Q. Adv. Synth. Catal. 2020; 362: 3971
- 16 Zou D, Wang W, Hu Y, Jia T. Org. Biomol. Chem. 2023; 21: 2254
- 17 Sapountzis I, Knochel P. J. Am. Chem. Soc. 2002; 124: 9390
- 18 Meng S.-S, Li F, Tang X, Chan AS. C. Org. Lett. 2023; 25: 3718
- 19 Rauser M, Ascheberg C, Niggemann M. Angew. Chem. Int. Ed. 2017; 56: 11570
- 20 Rauser M, Eckert R, Gerbershagen M, Niggemann M. Angew. Chem. Int. Ed. 2019; 58: 6713
- 21 Suárez-Pantiga S, Hernández-Ruiz R, Virumbrales C, Pedrosa MR, Sanz R. Angew. Chem. Int. Ed. 2019; 58: 2129
- 22 Nykaza TV, Cooper JC, Li G, Mahieu N, Ramirez A, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 15200
- 23 Li G, Nykaza TV, Cooper JC, Ramirez A, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2020; 142: 6786
- 24 Li G, Qin Z, Radosevich AT. J. Am. Chem. Soc. 2020; 142: 16205
- 25 Guan X, Zhu H, Driver TG. ACS Catal. 2021; 11: 12417
- 26 Manna K, Ganguly T, Baitalik S, Jana R. Org. Lett. 2021; 23: 8634
- 27 Song H, Shen Y, Zhou H, Ding D, Yang F, Wang Y, Xu C, Cai X. J. Org. Chem. 2022; 87: 5303
- 28 Wang D, Wan Z, Zhang H, Alhumade H, Yi H, Lei A. ChemSusChem 2021; 14: 5399
- 29 Gui J, Pan C.-M, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
- 30 Zhu K, Shaver MP, Thomas SP. Chem. Sci. 2016; 7: 3031
- 31 Song H, Yang Z, Tung C.-H, Wang W. ACS Catal. 2020; 10: 276
- 32 Xiao J, He Y, Ye F, Zhu S. Chem 2018; 4: 1645
- 33 Cheung CW, Hu X. Nat. Commun. 2016; 7: 12494
- 34 Li G, Yang L, Liu J.-J, Zhang W, Cao R, Wang C, Zhang Z, Xiao J, Xue D. Angew. Chem. Int. Ed. 2021; 60: 5230
- 35 He H.-D, Zhang Z.-K, Tang H.-B, Xu Y.-Q, Xu X.-B, Cao Z.-Y, Xu H, Li Y. Org. Chem. Front. 2022; 9: 4875
- 36 Akana-Schneider BD, Weix DJ. J. Am. Chem. Soc. 2023; 145: 16150
- 37 Ma S.-S, Sun R, Zhang Z.-H, Yu Z.-K, Xu B.-H. Org. Chem. Front. 2021; 8: 6710
- 38 Jiang H.-M, Qin J.-H, Sun Q, Zhang D, Jiang J.-P, Ouyang X.-H, Song R.-J, Li J.-H. Org. Chem. Front. 2022; 9: 4070
- 39 Massolo E, Pirola M, Puglisi A, Rossi S, Benaglia M. RSC Adv. 2020; 10: 4040
- 40 Sun J.-L, Ci C, Jiang H, Dixneuf PH, Zhang M. Angew. Chem. Int. Ed. 2023; 62: e202303007
- 41 Sun J.-L, Jiang H, Dixneuf PH, Zhang M. J. Am. Chem. Soc. 2023; 145: 17329
- 42 Wang S, Li T, Gu C, Han J, Zhao C.-G, Zhu C, Tan H, Xie J. Nat. Commun. 2022; 13: 2432