Aktuelle Rheumatologie 2002; 27(2): 59-68
DOI: 10.1055/s-2002-25720
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Nozizeption, Schmerz und Antinozizeption: neurobiologische Aspekte

Nociception, Pain and Antinociception: Current ConceptsW.  Riedel1 , G.  Neeck2
  • 1Max-Planck-Institut für physiologische und klinische Forschung, W. G. Kerckhoff-Institut, Bad Nauheim
  • 2Stiftung W. G. Kerckhoff, Herz- und Rheumazentrum, Abteilung Rheumatologie, Bad Nauheim
Further Information

Publication History

Publication Date:
25 April 2002 (online)

Zusammenfassung

Die Physiologie der Schmerzwahrnehmung beruht auf einer komplexen Interaktion peripherer, spinaler und supraspinaler Strukturen des Zentralnervensystems (ZNS). Auf jeder Ebene des ZNS erfolgt eine Modulation nozizeptiver Information, wobei die zwei wichtigsten Transmittersysteme der Nozizeption und der Antinozizeption, das N-methyl-D-aspartate (NMDA)- und das Opioid-Rezeptor-System, eine nahezu identische Verteilung zeigen. Glutamat, der natürliche exzitatorische Transmitter aller Neurone mit ionotropen und metabotropen NMDA-Rezeptoren, bewirkt durch Öffnen des Ionenkanals für Ca2+ und die dadurch ausgelöste Aktivierung der intraneuronalen Stickoxidsynthase (NOS) die Freisetzung von Stickoxid (NO). Diffusion des NO zu Nachbarneuronen erhöht deren cGMP-Synthese und Aktivität, die vor allem auf spinaler Ebene zur Hyperalgesie oder Allodynie führen kann, wenn über diesen Mechanismus Transmitter aus Endigungen nozizeptiver Neurone freigesetzt werden. Die periphere Sensibilisierung nozizeptiver Axone erfolgt meist über Serotonin, Bradykinin oder Prostaglandine. Während die μ- und δ-Opioid Rezeptoren die NMDA-Rezeptor vermittelte Nozizeption hemmen oder verstärken, wirken κ-Opioide durch direkte Interaktion mit dem NMDA-Rezeptor auf diesen blockierend. Unter Stress freigesetztes Corticotropin-releasing Hormon (CRH) wirkt auf allen Ebenen des ZNS antinozizeptiv.

Abstract

The physiology of nociception involves a complex interaction of peripheral and central nervous system (CNS) structures, extending from the skin, the viscera and the musculoskeletal tissues to the cerebral cortex. The pathophysiology of chronic pain shows alterations of normal physiological pathways, giving rise to hyperalgesia or allodynia. After integration in the spinal cord, nociceptive information is transferred to thalamic structures before it reaches the somatosensory cortex. Each of these levels of the CNS contain modulatory mechanisms. The two most important systems in modulating nociception and antinociception, the N-methyl-D-aspartate (NMDA) and opioid receptor system, show a close distribution pattern in nearly all CNS regions, and activation of NMDA receptors has been found to contribute to the hyperalgesia associated with nerve injury or inflammation. Apart from substance P (SP), the major facilitatory effect in nociception is exerted by glutamate as the natural activator of NMDA receptors. Stimulation of ionotropic NMDA receptors causes intraneuronal elevation of Ca2+ which stimulates nitric oxide synthase (NOS) and, hence, the production of nitric oxide (NO). NO as a gaseous molecule diffuses out from the neuron and by action on guanylyl cyclase, NO stimulates in neighbouring neurons the formation of cGMP. Depending on the expression of cGMP-controlled ion channels in target neurons, NO may act excitatory or inhibitory. NO has been implicated in the development of hyperexcitability, resulting in hyperalgesia or allodynia, by increasing nociceptive transmitters at their central terminals. Among the three subtypes of opioid receptors, µ- and δ-receptors either inhibit or potentiate NMDA receptor-mediated events, while κ opioids antagonize NMDA receptor-mediated activity. Recently, stress-induced release of CRH has been found to act at all levels of the neuraxis to produce analgesia. Modulation of nociception occurs at all levels of the neuraxis, thus eliciting the multidimensional experience of pain involving sensory-discriminative, affective-motivational, cognitive, and locomotor components.

Literatur

  • 1 Abbott F V, Hong Y, Blier P. Persisting sensitization of the behavioural response to formalin-induced injury in the rat through activation of serotonin2A receptors.  Neurosci. 1997;  77 575-584
  • 2 Aimar P, Pasti L, Carmignoto G, Merighi A. Nitric oxide-producing islet cells modulate the release of sensory neuropeptides in the rat substantia gelatinosa.  J Neurosci. 1998;  18 10 375-10 388
  • 3 Aizenman E, Lipton S A, Loring R H. Selective modulation of NMDA responses by reduction and oxidation.  Neuron. 1989;  2 1257-1263
  • 4 Amit Z, Galina Z H. Stress-induced analgesia: adaptive pain suppression.  Physiol Rev. 1986;  66 1091-1120
  • 5 Bandler R, Shipley M T. Columnar organization in the midbrain periaqueductal grey: modules for emotional expression?.  Trends Neurosci. 1994;  17 379-389
  • 6 Barber L A, Vasko M R. Activation of protein kinase C augments peptide release from rat sensory neurons.  J Neurochem. 1996;  67 72-80
  • 7 Basbaum A I. Spinal mechanisms of acute and persistent pain.  Reg Anesth Pain Med. 1999;  24 59-67
  • 8 Basbaum A I, Fields H L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry.  Ann Rev Neurosci. 1984;  7 309-338
  • 9 Besedovsky H, Del Rey A, Sorkin E, Dinarello C A. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones.  Science. 1986;  233 652-654
  • 10 Besson J M, Caouch A. Peripheral and spinal mechanisms of nociception.  Physiol Rev. 1987;  67 67-186
  • 11 Björklund A, Hökfelt T. Handbook of Chemical Neuroanatomy. Vol 9: Neuropeptides in the CNS, Part II. Björklund A, Hökfelt T, Kuhar MJ (Eds) Amsterdam; Elsevier 1990
  • 12 Björklund A, Hökfelt T. Handbook of Chemical Neuroanatomy. Vol 11: Neuropeptide Receptors in the CNS. Björklund A, Hökfelt T, Kuhar MJ (Eds) Amsterdam; Elsevier 1992
  • 13 Bliss T VP, Collingridge G L. A synaptic model of memory: long-term potentiation in the hippocampus.  Nature. 1993;  361 31-39
  • 14 Bonnot A, Corio M, Tramu G, Viala D. Immunocytochemical distribution of ionotropic glutamate receptor subunits in the spinal cord of the rabbit.  J Chem Neuroanat. 1996;  11 267-278
  • 15 Bredt D S, Snyder S H. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum.  Proc Natl Acad Sci USA. 1989;  86 9030-9033
  • 16 Brenman J E, Bredt D S. Synaptic signaling by nitric oxide.  Curr Opin Neurobiol. 1997;  7 374-378
  • 17 Boxall S J, Berthele A, Laurie D J, Sommer B, Zieglgänsberger W, Urban L, Tölle T R. Enhanced expression of metabotropic glutamate receptor 3 messenger RNA in the rat spinal cord during ultraviolet irradiation induced peripheral inflammation.  Neurosci. 1998;  82 591-602
  • 18 Buéno L, Fioramonti J, Garcia-Villar R. Pathobiology of visceral pain: Molecular mechanisms and therapeutic implications. III. Visceral afferent pathways: a source of new therapeutic targets for abdominal pain.  Am J Physiol. 2000;  278 G670-G676
  • 19 Burstein R, Potrebic S. Retrograde labeling of neurons in the spinal cord that project directly to the amygdala or the orbital cortex in the rat.  J Comp Neurol. 1993;  335 469-485
  • 20 Bushnell M C. Thalamic processing of sensory-discriminative and affective-motivational dimensions of pain.  In: Besson JM, Guilbaud G, Ollat H (Eds).  Forebrain Areas Involved in Pain Processing. Paris; John Libbey Eurotext 1995
  • 21 Canguilhem G. Das Normale und das Pathologische. Berlin; Ullstein 1977
  • 22 Casey K L. Forebrain mechanisms of nociception and pain: analysis through imaging.  Proc Natl Acad Sci USA. 1999;  96 7668-7674
  • 23 Casey K L, Minoshima S. The forebrain network for pain: an emerging image. In: Besson JM, Guilbaud G, Ollat H (Eds) Forebrain Areas Involved in Pain Processing. Paris; John Libbey Eurotext 1995
  • 24 Cervero F. Sensory innervation of the viscera: peripheral basis of visceral pain.  Physiol Rev. 1994;  74 95-138
  • 25 Cervero F. What is a nociceptor-specific (class3) cell?.  Pain. 1995;  62 123-124
  • 26 Chapman V, Haley J E, Dickenson A H. Electrophysiologic analysis of preemptive effects of spinal opiods on N-methyl-D-aspartate receptor-mediated events.  Anesthesiology. 1994;  81 1429-1435
  • 27 Chen L, Gu Y, Huang L YM. The opioid peptide dynorphin directly blocks NMDA receptor channels in the rat.  J Physiol (Lond). 1995;  482 575-581
  • 28 Chrousos G P, Gold P W. The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis.  JAMA. 1992;  267 1244-1252
  • 29 Chudler E H, Dong W K. The role of the basal ganglia in nociception and pain.  Pain. 1995;  60 5-38
  • 30 Coggeshall R E, Carlton S M. Receptor localization in the mammalian dorsal horn and primary afferent neurons.  Brain Res Rev. 1997;  24 28-66
  • 31 Coyle J T, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders.  Science. 1993;  262 689-695
  • 32 Craig A D, Reiman E M, Evans A, Bushnell M C. Functional imaging of an illusion of pain.  Nature. 1996;  384 258-260
  • 33 Crofford L J, Pillemer S R, Kalogeras K T, Cash J M, Michelson D, Kling M A, Sternberg E M, Gold P W, Chrousos G P, Wilder R L. Hypothalamic-pituitary-adrenal axis perturbations in patients with fibromyalgia.  Arthritis Rheum. 1994;  37 1583-1592
  • 34 Cross S A. Pathophysiology of pain.  Mayo Clin Proc. 1994;  69 375-383
  • 35 Darland T, Heinricher M M, Grandy D K. Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more.  Trends Neurosci. 1998;  21 215-221
  • 36 Davis K D, Taylor S J, Crawley A P, Wood M L, Mikulis D J. Functional MRI of pain and attention related activations in the human cingulate cortex.  J Neurophysiol. 1997;  77 3370-3380
  • 37 Deak T, Meriwether J, Fleshner M, Spencer R L, Abouhamze A, Moldawer L L, Grahn R E, Watkins L R, Maier S F. Evidence that brief stress may induce the acute phase response in rats.  Am J Physiol. 1997;  273 R1998-R2004
  • 38 di Chiara G, Imperato A. Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats.  J Pharmacol Exp Ther. 1988;  244 1067-1080
  • 39 Dray A, Perkins M. Bradykinin and inflammatory pain.  Trends Neurosci. 1993;  16 99-104
  • 40 Dunn A J, Berridge C W. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses?.  Brain Res Rev. 1990;  15 71-100
  • 41 Fanselow M S. Antinociception as a response to aversive Pavlovian conditional stimuli: Cognitive and emotional mediators. In: Denny MR (Ed) Fear, Avoidance, and Phobias: a Fundamental Analysis. Hillsdale; Lawrence Erlbaum 1991: 61-86
  • 42 Fanselow M S. The midbrain periaqueductal grey as a coordinator of action in response to fear and anxiety. In: Depaulis A, Bandler R (Eds) The Periaqueductal Grey Matter. New York; Plenum Press 1991: 139-150
  • 43 Fields H L, Basbaum A I. Central nervous system mechanisms of pain modulation. In: Wall PD, Melzack R (Eds) Textbook of Pain. Edinburgh; Churchill-Livingstone 1994
  • 44 Fock S, Mense S. Excitatory effects of 5-hydroxytryptamine, histamine and potassium ions on muscular group IV afferent units: a comparison with bradykinin.  Brain Res. 1976;  105 459-467
  • 45 Fürst S. Transmitters involved in antinociception in the spinal cord.  Brain Res Bull. 1999;  48 129-141
  • 46 Garry M G, Richardson J D, Hargreaves K M. Sodium nitroprusside evokes the release of immunoreactive calcitonin gene-related peptide and substance P from dorsal horn slices via nitric oxide-dependent and nitric oxide-independent mechanisms.  J Neurosci. 1994;  14 4329-4337
  • 47 Garthwaite J, Charles S L, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain.  Nature. 1988;  336 385-388
  • 48 Giesler G J, Katter J T, Dado R J. Direct spinal pathways to the limbic system for nociceptive information.  Trends Neurosci. 1994;  17 244-250
  • 49 Gracy K N, Svingos A L, Pickel V M. Dual ultrastructural localization of mu-opioid receptors and NMDA-type glutamate receptors in the shell of the rat nucleus accumbens.  J Neurosci. 1997;  17 4839-4848
  • 50 Griesbacher T, Lembeck F. Effect of bradykinin antagonists on bradykinin-induced plasma extravasation, venoconstriction, prostaglandin E2 release, nociceptor stimulation and contraction of the iris sphincter muscle in the rabbit.  Br J Pharmacol. 1987;  92 330-340
  • 51 Handwerker H O, Kobal G. Psychophysiology of experimentally induced pain.  Physiol Rev. 1993;  73 639-671
  • 52 Harris J A. Descending antinociceptive mechanisms in the brainstem: their role in the animal’s defensive system.  J Physiol (Paris). 1996;  90 15-25
  • 53 Harris J A, Westbrook R F. Effects of benzodiazepine microinjection into the amygdala or periaqueductal grey upon the expression of conditioned fear and hypoalgesia in rats.  Behav Neurosci. 1995;  109 295-304
  • 54 Hensel H. Neural processes in thermoregulation.  Physiol Rev. 1973;  53 948-1017
  • 55 Hoyt K R, Tang L-H, Aizenman E, Reynolds I R. Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons.  Brain Res. 1992;  592 310-316
  • 56 Jasmin L, Burkey A R, Card J P, Basbaum A. Transneuronal labelling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat.  J Neurosci. 1997;  17 3751-3765
  • 57 Juan H, Seewann S. Selective reduction by some vasodilators and the prostaglandin antagonist SC-19 220 of a response to the algesic effect of bradykinin.  Eur J Pharmacol. 1980;  65 267-278
  • 58 Kagan V E, Shvedova A, Serbinova E, Khan S, Swanson C, Powell R, Packer L. Dihydrolipoic acid - a universal antioxidant both in the membrane and in the aqueous phase.  Biochem Pharmacol. 1992;  44 1637-1649
  • 59 Khasar S G, Ouseph A K, Choub B, Ho T, Green P G, Levine J D. Is there more than one prostaglandin E receptor subtype mediating hyperalgesia in the rat hindaw.  Neurosci. 1995;  64 1161-1165
  • 60 Kuroda R, Kawabata A, Kawao N, Umeda W, Takemura M, Shigenaga Y. Somatosensory cortex stimulation-evoked analgesia in rats: potentiation by NO synthase inhibition.  Life Sci. 2000;  66 PL271-PL276
  • 61 Ladabaum U, Minoshima S, Owyang C. Pathobiology of visceral pain: Molecular mechanisms and therapeutic implications. V. Central nervous system processing of somatic and visceral sensory signals.  Am J Physiol. 2000;  279 G1-G6
  • 62 Lang E, Novak A, Reeh P W, Handwerker H O. Chemosensitivity of fine afferents from rat skin in vitro.  J Neurophysiol. 1990;  63 887-901
  • 63 Lariviere W R, Melzack R. The role of corticotropin-releasing factor in pain and analgesia.  Pain. 2000;  84 1-12
  • 64 Lee D E, Kim S J, Zhuo M. Comparison of behavioral responses to noxious cold and heat in mice.  Brain Res. 1999;  845 117-121
  • 65 Liebel J T, Swandulla D, Zeilhofer H U. Modulation of excitatory synaptic transmission by nociceptin in superficial dorsal horn neurones of the neonatal rat spinal cord.  Br J Pharmacol. 1997;  121 425-432
  • 66 Lipton S A, Chol Y B, Pan Z H, Lei S Z, Chen H SV, Sucher N J, Loscalzo J, Singel D J, Stamler J S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.  Nature. 1993;  364 626-632
  • 67 Malcangio M, Bowery N G. GABA and its receptors in the spinal cord.  Trends Pharmacol Sci. 1996;  17 457-462
  • 68 Mansour A, Fox C A, Akil H, Watson S J. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications.  Trends Neurosci. 1995;  18 22-29
  • 69 Mansour A, Burke S, Pavlic R J, Akil H, Watson S J. Immunohistochemical localization of the cloned kappa 1 receptor in the rat CNS and pituitary.  Neurosci. 1996;  71 671-690
  • 70 Mao J. NMDA and opioid receptors: their interaction in antinociception, tolerance and neuroplasticity.  Brain Res Rev. 1999;  30 289-304
  • 71 Mao J, Price D D, Phillips L L, Mayer D J. Increases in protein kinase C gamma immunoreactivity in the spinal cord of rats associated with tolerance to the analgesic effects of morphine.  Brain Res. 1995;  677 257-267
  • 72 Mao J, Price D D, Phillips L L, Mayer D J. Mechanisms of hyperalgesis and morphine tolerance: a current view of their possible interaction.  Pain. 1995;  62 259-274
  • 73 Markenson J A. Mechanisms of chronic pain.  Am J Med. 1996;  101 (Suppl 1A) 6S-18S
  • 74 May A, Kaube H, Büchel C, Eichten C, Tijntjes M, Jüptner M, Weiller C, Deiner H C. Experimental cranial pain elicited by capsaicin: a PET study.  Pain. 1998;  74 61-66
  • 75 McMahon S, Lewin G R, Wall P D. Central hyperexcitability triggered by noxious inputs.  Curr Opin Neurobiol. 1993;  3 602-610
  • 76 Meller S T, Gebhart G F. Nitric oxide (NO) and nociceptive processing in the spinal cord.  Pain. 1993;  52 127-136
  • 77 Mendell L M, Wall P D. Response of single dorsal cord cells to peripheral cutaneous unmyelinated fibres.  Nature. 1965;  206 97-99
  • 78 Mense S. Nociception from skeletal muscle in relation to clinical muscle pain.  Pain. 1993;  54 241-289
  • 79 Mense S. Nociceptors in skeletal muscle and their reaction to pathological tissue changes. In: Belmonte C, Cervero F (Eds) Neurobiology of Nociceptors. Oxford; Oxford Univ Press 1996: 184-201
  • 80 Merskey H. The definition of pain.  Eur J Psychiatry. 1991;  6 153-159
  • 81 Meunier J C, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour J L, Guillemot J C, Ferrara P, Monsarrat B, Mazarguil H, Vassart G, Parmentier M, Costentin J. Isolation and structure of the endogenous antagonist of opioid receptor-like ORL 1 receptor.  Nature. 1995;  377 532-535
  • 82 Millan M J. Multiple opioid systems and pain: a review.  Pain. 1986;  26 303-349
  • 83 Millan M J. The induction of pain: an integrative review.  Progr in Neurobiol. 1999;  57 1-164
  • 84 Montoya P, Ritter K, Huse E, Larbig W, Braun C, Topfner S, Lutzenberger W, Grodd W, Flor H, Birbaumer N. The cortical somatotopic map and phantom phenomena in subjects with congenital limb atrophy and traumatic amputees with phantom limb pain.  Eur J Neurosci. 1998;  10 1095-1102
  • 85 Mulder A H. κ- and δ-opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release.  Nature. 1984;  308 278-280
  • 86 Newman H M, Stevens R T, Apkarian A V. Direct spinal projections to limbic and striatal areas: anterograde transport studies from the upper cervical spinal cord and the cervical enlargement in squirrel monkey and rat.  J Comp Neurol. 1996;  365 640-685
  • 87 Price D D. Psychological and neural mechanisms of the affective dimension of pain.  Science. 2000;  288 1769-1772
  • 88 Radhakrishnan V, Yashpal K, Hui-Chan C WY, Henry J L. Implication of a nitric oxide synthase mechanism in the action of substance P: L-NAME blocks thermal hyperalgesia induced by endogenous and exogenous substance P in the rat.  Eur J Neurosci. 1995;  7 1920-1925
  • 89 Reinscheid R K, Nothacker H P, Bourson A, Ardati A, Henningsen R A, Bunzow J R, Grandy D K, Langen H, Monsma F J Jr, Civelli O. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor.  Science. 1995;  270 792-794
  • 90 Rexed B. The cytoarchitectonic organization of the spinal cord in the rat.  J Comp Neurol. 1952;  96 415-466
  • 91 Riedel W. Warm receptors in the dorsal abdominal wall of the rabbit.  Pflügers Arch. 1976;  361 205-206
  • 92 Riedel W. Temperature homeostasis and redox homeostasis. In: Kosaka M, Sugahara T, Schmidt KL, Simon E (Eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Tokyo; Springer 2001: 300-312
  • 93 Sann H, Pierau F K. Efferent functions of C-fiber nociceptors.  Z Rheumatol. 1998;  57 Suppl 2 8-13
  • 94 Schadrack J, Zieglgänsberger W. Pharmacology of pain processing systems.  Z Rheumatol. 1998;  57 Suppl 2 1-4
  • 95 Schaible H G, Grubb B D. Afferent and spinal mechanism of joint pain.  Pain. 1993;  55 5-54
  • 96 Schaible H G, Schmidt R F. Neurobiology of articular nociceptors. In: Belmonte C, Cervero F (Eds) Neurobiology of Nociceptors. Oxford; Oxford Univ Press 1996: 202-219
  • 97 Schmid H A, Riedel W, Simon E. Role of nitric oxide in temperature regulation.   Progr Brain Res. 1998;  115 25-49
  • 98 Schmidt R F, Thews G, Lang F (Eds). Physiologie des Menschen. Berlin; Springer 2000
  • 99 Schmidt R, Schmelz M, Ringkamp M, Handwerker H O, Torebjork H E. Innervation territories of mechanically activated C nociceptor units in human skin.  J Neurophysiol. 1997;  78 2641-2648
  • 100 Schuman E M, Madison D V. Nitric oxide and synaptic function.  Annu Rev Neurosci. 1994;  17 153-183
  • 101 Sherman S M, Guillery R W. Functional organization of thalamocortical relays.  J Neurophysiol. 1996;  76 1367-1395
  • 102 Simon E. Temperature regulation: the spinal cord as a site of extrahypothalamic thermoregulatory functions.  Rev Physiol Biochem Pharmakol. 1974;  71 1-76
  • 103 Sinor J D, Boeckman F A, Aizenman E. Intrinsic redox properties of N-methyl-D-aspartate receptor can determine the developmental expression of excitotoxicity in rat cortical neurons in vitro.  Brain Res. 1997;  747 297-303
  • 104 Sivilotti L G, Gerber G, Rawat B, Woolf C J. Morphine selectively depresses the slowest, NMDA-independent component of C-fiber-evoked synaptic activity in the rat spinal cord in vitro.  Eur J Neurosci. 1995;  7 12-18
  • 105 Snyder S H. Nitric oxide: First in a new class of neurotransmitters?.  Science. 1992;  257 494-496
  • 106 Stamler J S. Redox signaling: nitrosylation and related target interactions of nitric oxide.  Cell. 1994;  78 931-936
  • 107 Stanfa L, Dickenson A. Spinal opioid systems in inflammation.  Inflamm Res. 1995;  44 231-241
  • 108 Stein C, Machelska H, Schäfer M. Peripheral analgesic and antiinflammatory effects of opioids.  Z Rheumatol. 2001;  60 416-424
  • 109 Sucher N J, Lipton S A. Redox modulatory site of the NMDA receptor-channel complex: regulation by oxidized glutathione.  J Neurosci Res. 1991;  30 582-591
  • 110 Tang L H, Aizenman E. Allosteric modulation of the NMDA receptor by dihydrolipoic and lipoic acid in rat cortical neurons in vitro.  Neuron. 1993;  11 857-863
  • 111 Taylor D CM, Pierau F K. Nociceptive afferent neurones. Manchester; Manchester University Press 1991
  • 112 Timpl P, Spanagel R, Sillaber I, Kresse A, Reul J MHM, Stalla G K, Blanquet V, Steckler T, Holsboer F, Wurst W. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1.  Nature Genet. 1998;  19 162-166
  • 113 Urban L, Thompson S WN, Dray A. Modulation of spinal excitability: co-operation between neurokinin and excitatory amino acid neurotransmitters.  Trends Neurosci. 1994;  17 432-438
  • 114 Vaughan C W, Christie M J. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro.  J Physiol (Lond). 1997;  498 463-472
  • 115 Wang X, Robinson P J. Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system.  J Neurochem. 1997;  68 443-456
  • 116 Watkins L R, Cobelli D A, Mayer D J. Opiate vs non-opiate footshock induced antinociception (FSIA): descending and intraspinal components.  Brain Res. 1982;  245 97-106
  • 117 Watkins L R, Young E G, Kinscheck I B, Mayer D J. The neural basis of footshock antinociception: The role of specific ventral medullary nuclei.  Brain Res. 1983;  276 305-315
  • 118 Watkins L R, Kinscheck I B, Mayer D J. The neural basis of footshock antinociception: The effect of periaqueductal grey lesions and decerebration.  Brain Res. 1983;  276 317-324
  • 119 Watkins L R, Johannessen J N, Kinscheck I B, Mayer D J. The neurochemical basis of footshock antinociception: The role of spinal cord serotonin and norepinephrine.  Brain Res. 1984;  290 107-117
  • 120 Zhang K M, Wang X M, Mokha S S. Opioids modulate N-methyl-D-aspartatic acid (NMDA)-evoked responses of neurons in the superficial and deeper dorsal horn of the medulla (trigeminal nucleus caudalis).  Brain Res. 1996;  719 229-233

Dr. W. Riedel

Max-Planck-Institut für physiologische und klinische Forschung · W.G. Kerckhoff-Institut

Parkstraße 1 · 61231 Bad Nauheim ·

Phone: 06032-705 259

Fax: 06032-705 211

Email: w.riedel@kerckhoff.mpg.de

    >