Subscribe to RSS
DOI: 10.1055/s-2003-40843
An Efficient Synthetic Route to Homocarbonyltopsentine
Publication History
Publication Date:
24 July 2003 (online)
Abstract
Efficient synthesis of homocarbonyltopsentine Ia, starting from readily available triiodoimidazole 9 and 3-formylindoles 2 and 18 is described. The key steps of the synthesis are selective halogen-metal exchanges at the imidazole nucleus and subsequent addition to formylated indoles.
Key words
indoles - metalation - regioselectivity - addition reactions - alkaloids
- 1
Jacobs RS,Pomponi S,Gunasekera S, andWright A. inventors; PCT Int. Appl. WO 9818466. ; Chem. Abstr. 1998, 129, 587 -
2a
Casapullo A.Bifulco G.Bruno I.Riccio R. J. Nat. Prod. 2000, 63: 447 -
2b
Faulkner DJ. Nat. Prod. Rep. 2002, 19: 1 -
3a
Phife DW.Ramos RA.Feng M.King I.Gunasekera SP.Wright A.Patel M.Pachter JA.Coval SJ. Bioorg. Med. Chem. Lett. 1996, 6: 2103 -
3b
Jiang B.Xiong W.-N.Yang C.-G.Jiang H.-L.Cheng F.Chen K.-X. Bioorg. Med. Chem. 2002, 10: 2775 - See for example:
-
4a
Jiang B.Yang C.-G.Wang J. J. Org. Chem. 2001, 66: 7560 -
4b
Miyake FY.Yakushijin K.Horne DA. Org. Lett. 2000, 2: 3185 -
4c
Janosik T.Johnson A.-L.Bergman J. Tetrahedron 2002, 58: 2813 - 5 For a review on metalation of the
imidazoles see:
Iddon B.Ngochindo RI. Heterocycles 1994, 38: 2487 -
6a
Iddon B.Lim BL. J. Chem. Soc., Perkin Trans. 1 1983, 735 -
6b
Abarbri M.Thibonnet J.Bérillon L.Dehmel F.Rottländer M.Knochel P. J. Org. Chem. 2000, 65: 4618 -
7a
Ngochindo RI. J. Chem. Res., Synop. 1990, 58 -
7b
Lipshutz BH.Vaccaro W.Huff B. Tetrahedron Lett. 1986, 27: 4095 - 8
LaMattina JL.Mularski CJ. J. Org. Chem. 1986, 51: 413 - 9
Achab S. Tetrahedron Lett. 1996, 37: 5503 ; and references cited therein - 10
Turner RM.Ley SV.Lindell SD. Synlett 1993, 748 - 12 Synthesised by formylation (POCl3,
DMF) and protection (Boc2O,
DMAP, acetonitrile) of 6-benzyloxyindole prepared according to;
Moody CJ. J. Chem. Soc., Perkin Trans. 1 1984, 1333
References
All new compounds gave satisfactory spectroscopic and analytical data. Selected spectroscopic data: 16: white solid, mp >210 °C; IR (KBr): 3198, 1609, 1590, 1512, 1415, 1110, 859 cm-1; 1H NMR (300 MHz, DMSO-d 6): δ 7.22-7.30 (m, 4 H, HAr), 7.53-7.59 (m, 2 H, HAr), 8.02 (s, 1 H, HAr), 8.37-8.40 (m, 2 H, HAr), 8.97 (s, 1 H, HAr), 9.14 (s, 1 H, HAr), 12.00 (s, 1 H, NH), 12.21 (s, 1 H, NH), 13.70 (s, 1 H, NH); 13C NMR (75 MHz, DMSO-d 6): δ 112.2 (CH), 112.5 (CH), 113.4 (C), 114.9 (C), 121.6 (CH), 121.7 (2 CH), 122.3 (CH), 122.9 (CH), 123.2 (CH), 124.3 (CH), 126.5 (C), 126.7 (C), 135.7 (CH), 136.2 (C), 136.3 (C), 137.1 (CH), 143.3 (C), 145.5 (C), 176.5 (CO), 181.6 (CO); MS (ESI): m/z 355 (M + H+); HRMS (LSIMS) for C21H15N4O2: calculated: 355.1195, found: 355.1195. Ia: yellow solid, mp >210 °C; IR (KBr): 3380, 3200, 1592, 1572, 1525, 1430, 1120, 868 cm-1; 1H NMR (300 MHz, DMSO-d 6): δ 6.78 (dd, 1 H, J = 1.7 Hz, 8.6 Hz, HAr), 6.92 (br s, 1 H, HAr), 7.20-7.28 (m, 2 H, HAr), 7.53-7.56 (m, 1 H, HAr) 8.01 (s, 1 H, HAr), 8.15 (d, 1 H, J = 8.6 Hz, HAr), 8.38-8.41 (m, 1 H, HAr), 8.96 (br s, 2 H, HAr), 9.33 (s, 1 H, OH), 11.84 (s, 1 H, NH), 11.99 (s, 1 H, NH), 13.63 (s, 1 H, NH); 13C NMR (75 MHz, DMSO-d 6): δ 97.6 (CH), 112.2 (CH), 112.3 (CH), 113.6 (C), 114.9 (C), 119.4 (C), 121.7 (CH), 121.8 (CH), 122.1 (CH), 122.9 (CH), 124.2 (CH), 126.8 (C), 135.7 (CH), 135.9 (CH), 136.2 (C), 137.6 (C), 143.3 (C), 145.6 (C), 154.4 (C), 176.3 (CO), 181.6 (CO); MS (ESI): m/z 371 (M + H+); HRMS (LSIMS) for C21H15N4O3: calculated: 371.1144, found: 371.1143.