Plant Biol (Stuttg) 2004; 6(5): 578-589
DOI: 10.1055/s-2004-821089
Original Paper

Georg Thieme Verlag Stuttgart KG · New York

Specific Intra-Tissue Responses to Manganese in the Floating Lamina of Trapa natans L.

C. Baldisserotto1 , L. Ferroni1 , V. Medici1 , A. Pagnoni2 , M. Pellizzari1 , M. P. Fasulo1 , F. Fagioli2 , A. Bonora1 , S. Pancaldi1
  • 1Dipartimento delle Risorse Naturali e Culturali, University of Ferrara, C.so Porta Mare, 2, 44100 Ferrara, Italy
  • 2Laboratory of Atomic Spectroscopy, Department of Chemistry, University of Ferrara, via L. Borsari, 46, 44100 Ferrara, Italy
Further Information

Publication History

Publication Date:
06 August 2004 (online)

Abstract

Plant tolerance to heavy metals requires morpho-physiological mechanisms that are still poorly understood, especially in hydrophytes. This study focuses on the young floating lamina of the rhyzophyte Trapa natans exposed for 10 d to 130 µM Mn. The lamina has the ability to bioaccumulate Mn (> 3000 µg g-1). X-ray microanalysis of Mn cellular distribution revealed accumulation in the upper epidermis, in the first palisade layer, and in the idioblasts of the spongy tissue, which were shown with electron microscopy to contain osmiophilic vacuolar deposits, also observed to a minor extent in the control leaves. On the basis of biochemical and histochemical tests, these deposits were attributed to phenolic compounds that were probably able to chelate Mn. Net photosynthesis, photosynthetic pigments, room temperature microspectrofluorimetric analyses, and ultrastructural studies of plastids were performed to evaluate the status of the photosynthetic apparatus. A greater development of thylakoid membranes was observed in plastids of the second palisade and spongy tissue, which, however, did not accumulate Mn. Only the spongy tissue experienced inadequate assembly of PS II, but this did not significantly influence the photosynthetic yield of the whole lamina. It was concluded that T. natans can optimise productivity in the presence of Mn by means of specific intra-tissue responses within the framework of the floating lamina.

References

  • 1 Aalto T., Juurola E.. A three-dimensional model of CO2 transport in airspaces and mesophyll cells of a silver birch leaf.  Plant, Cell and Environment. (2002);  25 1399-1410
  • 2 Alfonso M., Montoya G., Cases R., Rodriguez R., Picorel R.. Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition.  Biochemistry. (1994);  33 10494-10500
  • 3 Anderson J. M.. Photoregulation of the composition, function, and structure of thylakoid membranes.  Annual Review of Plant Physiology. (1986);  37 93-136
  • 4 Blamey F. P. C., Joyce D. C., Edwards D. D., Asher C. J.. Role of trichomes in sunflower tolerance to manganese toxicity.  Plant Soil. (1986);  91 171-180
  • 5 Bonora A., Pancaldi S., Gualandri R., Fasulo M. P.. Carotenoid and ultrastructure variations in plastids of Arum italicum Miller fruit during maturation and ripening.  Journal of Experimental Botany. (2000);  51 873-884
  • 6 Bringezu K., Lichtenberger O., Leopold I., Neumann D.. Heavy metal tolerance of Silene vulgaris. .  Journal of Plant Physiology. (1999);  154 536-546
  • 7 Butler W. L.. Energy distribution in the photochemical apparatus of photosynthesis.  Annual Review of Plant Physiology. (1978);  29 345-378
  • 8 Davis M. A., Pritchard S. G., Boyd R. S., Prior S. A.. Developmental and induced responses of nickel-based and organic defences of the nickel-hyperaccumulating shrub, Psychotria douarrei. .  New Phytologist. (2001);  150 49-58
  • 9 Emmons C. L., Peterson D. M., Paul G. L.. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants.  Journal of Agricultural Food Chemistry. (1999);  47 4894-4898
  • 10 Ernst W. H. O., Verkleij J. A. C., Schat H.. Metal tolerance in plants.  Acta Botanica Neerlandica. (1992);  41 229-248
  • 11 Gaur J. P., Noraho N., Chauhan Y. S.. Relationship between heavy metal accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R. Br.  Aquatic Botany. (1994);  49 183-192
  • 12 Gommes R., Muntau H.. Determination in situ of the rates of uptake of heavy metals by macrophytes of Lake Maggiore.  Memorie dell'Istituto Italiano di Idrobiologia. (1981);  38 347-377
  • 13 Gonzáles A., Steffen K. L., Lynch J. P.. Light and excess manganese.  Plant Physiology. (1998);  118 493-504
  • 14 Grill E., Winnacker E. L., Zenk M. H.. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins.  Proceedings of the National Academy of Science USA. (1987);  84 439-443
  • 15 Hall J. L.. Cellular mechanisms for heavy metal detoxification and tolerance.  Journal of Experimental Botany. (2002);  53 1-11
  • 16 Hirschi K. D., Korenkov V. D., Cunningham K. W., Rea P. A., Fink G.. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance.  Plant Physiology. (2000);  124 125-133
  • 17 Horiguchi T.. Mechanisms of manganese toxicity and tolerance of plants. VII. Effects of light intensity on manganese-induced chlorosis.  Journal of Plant Nutrition. (1988);  11 235-246
  • 18 Iwakuma T., Tsuchiya T.. An experimental study of nutrient removal from lake water by a floating-leaved plant, Trapa natans. .  Kokuritsu Kogai Kenkyusho Kenkyu Hokoku. (1986);  96 101-125
  • 19 Krause G. H., Weis D. N.. Chlorophyll fluorescence: the basics.  Annual Review of Plant Physiology and Plant Molecular Biology. (1991);  42 313-349
  • 20 Laakso K., Sullivan J. H., Huttunen S.. The effect of UV-B radiation on epidermal anatomy in loblolly pine (Pinus taeda L.) and Scots pine (Pinus sylvestris L.).  Plant, Cell and Environment. (2000);  23 461-472
  • 21 Lavid N., Barkay Z., Tel-Or E.. Accumulation of heavy metals in epidermal glands of the waterlily (Nymphaeaceae).  Planta. (2001);  212 313-322
  • 22 Lee J., Reeves K. D., Brookes R. R., Jaffré T.. Isolation and identification of a citrato-complex of nickel from nickel-accumulation plants.  Phytochemistry. (1977);  16 1503-1505
  • 23 Lichtenthaler H.. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.  Methods in Enzymology. (1987);  148 350-382
  • 24 Lucassen E. C. H. E. T., Smolders A. J. P., Roelofs J. G. M.. Increased groundwater levels cause iron toxicity in Glyceria fluitans (L.).  Aquatic Botany. (2000);  66 321-327
  • 25 Macfie S. M., Taylor G. J.. The effects of excess manganese on photosynthetic rate and concentration of chlorophyll in Triticum aestivum grown in solution culture.  Physiologia Plantarum. (1992);  85 467-475
  • 26 Macfie S. M., Cossins E. A., Taylor G. J.. Effects of excess manganese on production of organic acids in Mn-tolerant and in Mn-sensitive cultivars of Triticum aestivum L. (wheat).  Journal of Plant Physiology. (1994);  143 135-144
  • 27 Maljuga D. P.. Chemical composition of soils and plants as indicators of prospecting for metals. Izvestija Akademija Nauk SSSR, Ser.  Geografija Geofizika. (1947);  11 135-138
  • 28 Mancinelli A. L., Rossi F., Moroni A.. Cryptochrome, phytochrome, and anthocyanin production.  Plant Physiology. (1991);  96 1079-1085
  • 29 Memon A. R., Chino M., Hara K., Yatazawa M.. Manganese toxicity in field grown tea plants and the microdistribution of manganese in the leaf tissues as revealed by X-ray micrography.  Soil Science and Plant Nutrition. (1981);  27 317-328
  • 30 Nable R. O., Houtz R. O., Cheniae G. M.. Early inhibition of photosynthesis during development of Mn toxicity in tobacco.  Plant Physiology. (1988);  86 1136-1142
  • 31 Neumann D., Lichtenberger O., Gunther D., Tschiersch K., Nover L.. Heat-shock induces heavy metal tolerance in higher plants.  Planta. (1994);  194 360-367
  • 32 Neumann D., zur Nieden U., Lichtenberger O., Leopold I.. How does Armeria maritima tolerate high heavy metal concentrations?.  Journal of Plant Physiology. (1995);  146 704-717
  • 33 Ohki K.. Manganese deficiency and toxicity effects on photosynthesis, chlorophyll, and transpiration in wheat.  Crop Science. (1985);  25 187-191
  • 34 Omata T., Murata N., Satoh K.. Quinone and phaeophytin in the photosynthetic reaction center II from spinach chloroplasts.  Biochimica et Biophysica Acta. (1984);  765 403-405
  • 35 Pancaldi S., Baldisserotto C., Ferroni L., Bonora A., Fasulo M. P.. Room temperature microspectrofluorimetry as a useful tool for studying the assembly of the PS II chlorophyll-protein complexes in single living cells of etiolated Euglena gracilis Klebs during the greening process.  Journal of Experimental Botany. (2002);  53 1753-1763
  • 36 Pancaldi S., Bonora A., Gualandri R., Gerdol R., Manservigi R., Fasulo M. P.. Intra-tissue characteristics of chloroplasts in the lamina and petiole of mature winter leaf of Arum italicum Miller.  Botanica Acta. (1998);  111 267-272
  • 37 Petolino J. F., Collins G. B.. Manganese toxicity in tobacco (Nicotiana tabacum L.) callus and seedlings.  Journal of Plant Physiology. (1985);  118 139-144
  • 38 Pfeffer P. E., Tu S. I., Gerasimovicz W. V., Cavanaughk J. K.. In vivo 31PNMR studies of corn root tissue and its uptake of toxic metals.  Plant Physiology. (1986);  80 77-84
  • 39 Rai U. N., Sinha S.. Distribution of metals in aquatic edible plants: Trapa natans (Roxb.) Makino and Ipomoea aquatica Forsk.  Environmental Monitoring and Assessment. (2001);  70 241-252
  • 40 Rufty T. W., Miner G. S., Raper C. D. J.. Temperature effects on growth and manganese tolerance in tobacco.  Agronomy Journal. (1979);  71 638-644
  • 41 Santabarbara S., Neverov K. V., Garlaschi F. M., Zucchelli G., Jennings R. C.. Involvement of uncoupled antenna chlorophylls in photoinhibition in thylakoids.  FEBS Letters. (2001);  491 109-113
  • 42 Santandrea G., Pandolfi T., Bennici A.. A physiological characterization of Mn-tolerant tobacco plants selected by in vitro culture.  Plant Science. (2000);  150 163-170
  • 43 Santandrea G., Schiff S., Bennici A.. Effects of manganese on Nicotiana species in vitro and characterization of regenerated Mn-tolerant tobacco plants.  Plant Science. (1998);  132 71-82
  • 44 Schaaf G., Catoni E., Fitz M., Schwacke R., Schneider A., von Wirén N., Frommer W. B.. A putative role for the vacuolar calcium/manganese proton antiporter AtCAX2 in heavy metal detoxification.  Plant Biology. (2002);  4 612-618
  • 45 Schoefs B., Franck F.. Chlorophyll synthesis in dark-grown pine primary needles.  Plant Physiology. (1998);  118 1159-1168
  • 46 Strack D., Busch E., Klein E.. Anthocyanin patterns in European orchids and their taxonomic and phylogenetic relevance.  Phytochemistry. (1989);  28 2127-2139
  • 47 Sundqvist C., Dahlin C.. With chlorophyll pigments from prolamellar bodies to light-harvesting complexes.  Physiologia Plantarum. (1997);  100 748-759
  • 48 Tanfiljew G.. The question of the extinction of Trapa natans. .  Revue des Sciences Naturelles de la Societé des Naturalistes de St. Petersbourg. (1890);  47-56
  • 49 Taylor G. J.. Current views of the aluminum stress response: the physiological basis of tolerance.  Current Topics in Plant Biochemistry and Physiology. (1991);  10 57-93
  • 50 Thurman D. A., Rankin A. J.. The role of organic acids in zinc tolerance in Deschampsia caespitosa. .  New Phytologist. (1982);  91 629
  • 51 Vassiliev I. R., Kolber Z., Wyman K. D., Mauzerall D., Shulka V. K., Falkowski P. G.. Effects of iron limitation on photosystem II composition and light utilization in Dunaliella tertiolecta. .  Plant Physiology. (1995);  109 963-972
  • 52 Velioglu Y. S., Mazza G., Gao L., Oomah B. D.. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products.  Journal of Agricultural Food Chemistry. (1998);  46 4113-4117
  • 53 Verkleij J. A. C., Schat H.. Mechanisms of metal tolerance in higher plants. Shaw, J., ed. Heavy Metal Tolerance in Plants: Evolutionary Aspects. Boca Raton, FL; CRC Press (1990): 174-193
  • 54 Walworth J. L., Sumner M. E.. Foliar diagnosis. A review.  Advances in Plant Nutrition. (1988);  3 193-241
  • 55 Wilkinson R. E., Ohki K.. Influence of manganese deficiency and toxicity on isoprenoid syntheses.  Plant Physiology. (1988);  87 841-846
  • 56 Ye Z., Baker A. J. M., Wong M. H., Willis A. J.. Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface.  Aquatic Botany. (1998);  61 55-67

M. P. Fasulo

Dipartimento delle Risorse Naturali e Culturali
University of Ferrara

Corso Porta Mare, 2

44100 Ferrara

Italy

Email: fsm@dns.unife.it

Section Editor: J. T. M. Elzenga