Plant Biol (Stuttg) 2004; 6(5): 629-642
DOI: 10.1055/s-2004-821100
Original Paper

Georg Thieme Verlag Stuttgart KG · New York

Microbial Populations and Activities in the Rhizoplane of Rock-Weathering Desert Plants. I. Root Colonization and Weathering of Igneous Rocks

M. E. Puente1 , Y. Bashan1 , C. Y. Li2 , V. K. Lebsky1
  • 1Environmental Microbiology Group, Center for Biological Research of the Northwest (CIB), P.O. Box 128, La Paz, B.C.S. 23000, Mexico,
  • 2USDA Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, Oregon 97331, USA
Further Information

Publication History

Publication Date:
12 August 2004 (online)

Abstract

Dense layers of bacteria and fungi in the rhizoplane of three species of cactus (Pachycereus pringlei, Stenocereus thurberi, Opuntia cholla) and a wild fig tree (Ficus palmeri) growing in rocks devoid of soil were revealed by bright-field and fluorescence microscopy and field emission scanning electron microscopy. These desert plants are responsible for rock weathering in an ancient lava flow at La Purisima-San Isidro and in sedimentary rock in the Sierra de La Paz, both in Baja California Sur, Mexico. The dominant bacterial groups colonizing the rhizoplane were fluorescent pseudomonads and bacilli. Seven of these bacterial species were identified by the 16S rRNA molecular method. Unidentified fungal and actimomycete species were also present. Some of the root-colonizing microorganisms fixed in vitro N2, produced volatile and non-volatile organic acids that subsequently reduced the pH of the rock medium in which the bacteria grew, and significantly dissolved insoluble phosphates, extrusive igneous rock, marble, and limestone. The bacteria were able to release significant amounts of useful minerals, such as P, K, Mg, Mn, Fe, Cu, and Zn from the rocks and were thermo-tolerant, halo-tolerant, and drought-tolerant. The microbial community survived in the rhizoplane of cacti during the annual 10-month dry season. This study indicates that rhizoplane bacteria on cacti roots in rock may be involved in chemical weathering in hot, subtropical deserts.

References

  • 1 Adams J. B., Palmer F., Staley J. T.. Rock weathering in deserts: mobilization and concentration of ferric iron by microorganisms.  Geomicrobiology Journal. (1992);  10 99-114
  • 2 Ascaso C., Sancho L. G., Rodriguez Pascual C.. The weathering action of saxicolous lichens in maritime Antarctica.  Polar Biology. (1990);  11 33-40
  • 3 Barker W. W., Banfield J. F.. Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model.  Geomicrobiology Journal. (1998);  15 223-244
  • 4 Bashan Y., Davis E. A., Carrillo-Garcia A., Linderman R. G.. Assessment of VA mycorrhizal inoculum potential in relation to the establishment of cactus seedlings under mesquite nurse-trees in the Sonoran desert.  Applied Soil Ecology. (2000);  14 165-176
  • 5 Bashan Y., Levanony H., Whitmoyer R. E.. Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense. .  Journal of General Microbiology. (1991);  137 187-196
  • 6 Bashan Y., Li C. Y., Lebsky V. K., Moreno M., de-Bashan L. E.. Primary colonization of volcanic rocks by plants in arid Baja California, Mexico.  Plant Biology. (2002);  4 392-402
  • 7 Bashan Y., Rojas A., Puente M. E.. Improved establishment and development of three cacti species inoculated with Azospirillum brasilense transplanted into disturbed urban desert soil.  Canadian Journal of Microbiology. (1999);  45 441-451
  • 8 Berthelin J., Leyval C., Laheurte F., Giudici  de. P.. Involvement of roots and rhizosphere microflora in the chemical weathering of soil minerals. Atkinson, D., ed. Plant Root Growth: An Ecological Perspective. Oxford, UK; Blackwell Scientific Publications (1991): 187-200
  • 9 Carrillo A. E., Li C. Y., Bashan Y.. Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. .  Naturwissenschaften. (2002);  89 428-432
  • 10 Carrillo-Garcia A., Bashan Y., Bethlenfalvay G. J.. Resource-island soils and the survival of the giant cactus cardon of Baja California Sur.  Plant and Soil. (2000 a);  218 207-214
  • 11 Carrillo-Garcia A., Bashan Y., Diaz-Rivera E., Bethlenfalvay G. J.. Effects of resource-island soils, competition, and inoculation with Azospirillum on survival and growth of Pachycereus pringlei, the giant cactus of the Sonoran desert.  Restoration Ecology. (2000 b);  8 65-73
  • 12 Carrillo-Garcia A., Leon de la Luz J. L., Bashan Y., Bethlenfalvay G. J.. Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran desert.  Restoration Ecology. (1999);  7 321-335
  • 13 Chabot R., Antoun H., Cescas M. P.. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium legominosarum biovar. phaseoli. .  Plant and Soil. (1996);  184 311-321
  • 14 Chang T. T., Li C. Y.. Weathering of limestone, marble, and calcium phosphate by ectomycorrhizal fungi and associated microorganisms.  Taiwan Journal of Forest Science. (1998);  13 85-90
  • 15 Dahanayake K., Subasinghe S. M. N. D.. Formation of phosphatic coated grains and peloids by grain diminution of Precambrian apatite crystals.  Journal of Geological Society of India. (1990);  35 189-202
  • 16 Danin A.. Pitting of calcareus rocks by organisms under terrestrial conditions.  Israel Journal of Earth Science. (1993);  41 201-207
  • 17 Danin A., Caneva G.. Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens.  International Biodeterioration. (1990);  26 397-417
  • 18 De la Torre M. A., Gomez-Alarcon G., Palacios J. M.. “In vitro” biofilm formation by Penicillium frequentans strain on sandstone, granite, and limestone.  Applied Microbiology Biotechnology. (1993);  40 408-415
  • 19 Ferris F. G., Lowson E. A.. Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara Escarpment.  Canadian Journal of Microbiology. (1997);  43 211-219
  • 20 Flores M., Lorenzo J., Gomez-Alarcon G.. Algae and bacteria on historic monuments at Alcala de Henares, Spain.  International Biodeterioration and Biodegradation. (1997);  40 241-246
  • 21 Franco A. C., Nobel P. S.. Effect of nurse plants on the microhabitat and growth of cacti.  Journal of Ecology. (1989);  77 870-886
  • 22 Friedmann E. I.. Endolithic microorganisms in the Antarctic cold desert.  Science. (1982);  215 1045-1053
  • 23 Friedmann E. I., Kibler A. P.. Nitrogen economy of endolithic microbial communities in hot and cold deserts.  Microbial Ecology. (1980);  6 95-108
  • 24 Goudie A. S., Parker A. G.. Experimental simulation of rapid rock block disintegration by sodium chloride in a foggy coastal desert.  Journal of Arid Environment. (1999);  40 347-355
  • 25 Gyaneshwar P., Kumar G. N., Parekh L. J.. Effect of buffering on the phosphate-solubilizing ability of microorganism.  World Journal of Microbiology Biotechnology. (1998);  14 669-673
  • 26 Henderson M. E. K., Duff R. B.. The release of metallic and silicate ions from minerals, rocks, and soils by fungal activity.  Journal of Soil Science. (1963);  14 236-246
  • 27 Hinsinger P., Jaillard B., Dufey J. E.. Rapid weathering of a trioctahedral mica by the roots of ryegrass.  Soil Science Society of America Journal. (1992);  56 977-982
  • 28 Hinsinger P., Gilkes R. J.. Root-induced irreversible transformation of trioctahedral mica on the rhizosphere of rape.  Journal of Soil Science. (1993);  44 535-545
  • 29 Hinsinger P., Gilkes R. J.. Root-induced dissolution of phosphate rock in the rhizosphere of lupines grown in alkaline soil.  Australian Journal of Soil Research. (1995);  33 477-489
  • 30 Hirsch P., Eckhardt F. E. W., Palmer  Jr. R. J.. Methods for the study of rock-inhabiting microorganisms - A mini review.  Journal of Microbiology Methods. (1995 a);  23 143-167
  • 31 Hirsch P., Eckhardt F. E. W., Palmer  Jr. R. J.. Fungi active in weathering of rock and stone monuments.  Canadian Journal of Botany. (1995 b);  73 (Suppl. 1) S1384-S1390
  • 32 Holguin G., Guzman M. A., Bashan Y.. Two new nitrogen-fixing bacteria from the rhizosphere of mangroves trees, isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp.  FEMS Microbiology Ecology. (1992);  101 207-216
  • 33 Illmer P., Schinner F.. Solubilization of inorganic calcium phosphate-solubilization mechanisms.  Soil Biology and Biochemistry. (1995);  27 257-263
  • 34 Illmer P., Barbato A., Schinner F.. Solubilization of hardy-soluble AIPO4 with P-solubilizing microorganisms.  Soil Biology and Biochemistry. (1995);  27 265-270
  • 35 Jackson M. L.. Soil Chemical Analysis. Englewood Cliffs, NJ; Prentice-Hall, Inc (1958)
  • 36 Johnston C. G., Vestal J. R.. Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community.  Microbial Ecology. (1993);  25 305-319
  • 37 King E. O., Ward M. K., Raney D. E.. Two simple media for the demonstration of pyocyanin and fluorescin.  Journal of Laboratory and Clinical Medicine. (1954);  44 301-307
  • 38 Kingston H. M.. EPA Method 3015 Microwave Assisted Acid Digestion of Aqueous Samples and Extracts. Pittsburgh, PA, USA; Dusquesne University (1994)
  • 39 Krumbein W. E., Jens K.. Biogenic rock varnishes of the Negev Desert (Israel), an ecological study of iron and manganese transformation by cyanobacteria and fungi.  Oecologia (Berlin). (1981);  50 25-38
  • 40 Levanony H., Bashan Y., Romano B., Klein E.. Ultrastructural localization and identification of Azospirillum brasilense Cd on and within wheat root by immuno-gold labeling.  Plant and Soil. (1989);  117 207-218
  • 41 Leyval C., Laheurte F., Belgy G., Berthelin J.. Weathering of micas in the rhizosphere of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation.  Symbiosis. (1990);  9 105-109
  • 42 Lynch J. M., Whipps J. M.. Substrate flow in the rhizosphere.  Plant and Soil. (1990);  129 1-10
  • 43 Meyer J. R., Lindrman R. G.. Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. .  Soil Biology and Biochemistry. (1986);  18 185-190
  • 44 Osburn R. M., McCain A. H., Schroth M. N.. Biocontrol of Pythium ultimum damping off of sugar beets with rhizosphere bacteria (Abstract).  Phytopathology. (1983);  73 961
  • 45 Palmer  Jr. R. J., Siebert J., Hirsch P.. Biomass and organic acids in sandstone of a weathering building production by bacterial and fungal isolates.  Microbial Ecology. (1991);  21 253-266
  • 46 Pikoskaya R. I.. Mobilization of phosphates in soil in relation with vital activity of some microbial species [In Russian].  Mikrobiologiya. (1948);  17 362-370
  • 47 Puente M. E., Bashan Y.. Effect of inoculation with Azospirillum brasilense strains on the germination and seedlings growth of the giant columnar cardon cactus (Pachycereus pringlei). .  Symbiosis. (1993);  15 49-60
  • 48 Puente M. E., Bashan Y.. The desert epiphyte Tillandsia recurvata harbors the nitrogen-fixing bacterium Pseudomonas stutzeri. .  Canadian Journal of Botany. (1994);  72 406-408
  • 49 Puente M. E., Holguin G., Glick B. R., Bashan Y.. Root-surface colonization of black mangrove seedlings by Azospirillum halopraeferens and Azospirillum brasilense in seawater.  FEMS Microbiology Ecology. (1999);  29 283-292
  • 50 Puente M. E., Li C. Y., Bashan Y.. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings.  Plant Biology. (2004);  DOI: 10.1055/s-2004-821101
  • 51 Rennie R. J.. A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils.  Canadian Journal of Microbiology. (1981);  27 8-14
  • 52 Söderström B. E.. Vital staining of fungi in pure cultures and in soil with fluorescein diacetate.  Soil Biology and Biochemistry. (1977);  9 59-63
  • 53 Sorensen J.. The rhizosphere as a habitat for soil microorganisms. van Elsas, J. D., Trevors, J. T., and Wellington, E. M. H., eds. Modern Soil Microbiology. New York; Marcel Dekker, Inc. (1997): 21-45
  • 54 Sun H. J., Friedmann E. I.. Growth on geological time scales in the Antarctic cryptoendolithic microbial community.  Geomicrobiology Journal. (1999);  16 193-202
  • 55 Vazquez P., Holguin G., Puente M. E., Lopez-Cortes A., Bashan Y.. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves growing in a semiarid coastal lagoon.  Biology and Fertility of Soils. (2000);  30 460-468
  • 56 Verges V.. Solution and associated features of limestone fragments in a calcareous soil (Lithic Calcixeroll) from southern France.  Geoderma. (1985);  36 109-122

Y. Bashan

Environmental Microbiology Group
Center for Biological Research of the Northwest (CIB)

P.O. Box 128

La Paz, B.C.S. 23000

Mexico

Email: bashan@cibnor.mx

Section Editor: M. C. Ball