Subscribe to RSS
DOI: 10.1055/s-2004-830879
Enamination of β-Dicarbonyl Compounds Catalyzed by CeCl3·7H2O at Ambient Conditions: Ionic Liquid and Solvent-Free Media
Publication History
Publication Date:
04 August 2004 (online)

Abstract
Enamination of a wide various primary amines was successfully carried out in the presence of catalytic amounts of cerium chloride heptahydrate in ionic liquid and solvent-free conditions as ‘green’ media under mild reaction conditions.
Keywords
ionic liquid - solvent-free - TBAB - CeCl3·7H2O - chemoselectivity - primary amine - catalyst
-
1a
The Chemistry of Enamines
Part 1:
Rappoport Z. John Wiley and Sons; Chichester, New York, Brisbane, Toronto, Singapore: 1994. -
1b
Alan C.Spivey AC.Srikaran R.Diaper CM.David J.Turner D. J. Org. Biomol. Chem. 2003, 1: 1638 -
1c
Hassneen HM.Abdallah TA. Molecules 2003, 8: 333 -
1d
Michael JP.Koning CB.Gravestock D.Hosken GD.Howard AS.Jungmann CM.Krause RWM.Parsons AS.Pelly SC.Stanbury TV. Pure Appl. Chem. 1999, 71: 979 -
2a
Foster JE.Nicholson JM.Butcher R.Stables JP.Edafiogho IO.Goodwin AM.Henson MC.Smith CA.Scott KR. Bioorg. Med. Chem. 1999, 7: 2415 -
2b
Edafiogho IO.Moore JA.Alexander MS.Scott KR. J. Pharm. Sci. 1994, 83: 1155 -
2c
Sweeney TR.Strube RE. In Burger’s Medicinal Chemistry 4th ed., Part II:Wolff ME. Wiley; New York: 1979. p.333 -
3a
Cimarelli C.Palmieri G.Volpini E. Synth. Commun. 2001, 31: 2943 -
3b
Palmieri G.Cimarelli C. J. Org. Chem. 1996, 61: 5557 -
3c
Bartoli G.Cimarelli C.Marcantoni E.Palmieri G.Petrini M. J. Org. Chem. 1994, 59: 5328 -
3d
Lubell WD.Kitamura M.Noyori R. Tetrahedron: Asymmetry 1991, 2: 543 -
3e
Potin D.Dumas F.d’Angelo J. J. Am. Chem. Soc. 1990, 112: 3483 - 4
Beholz LG.Benovsky R.Ward DL.Barta NS.Stille JR. J. Org. Chem. 1997, 62: 1033 -
5a
David O.Blot J.Bellec C.Fargeau-Bellassoued M.-C.Haviari G.Célérier JP.Lhommet G.Gramain J.-C.Gardette D. J. Org. Chem. 1999, 64: 3122 -
5b
Michael JP.Parsons AS. Tetrahedron 1999, 55: 10915 -
6a
Popov SA.Gatilov YV.Rybalova TV.Tkachev AV. Tetrahedron: Asymmetry 2003, 14: 233 -
6b
Popov SA.Tkachev AV. Synth. Commun. 2001, 31: 233 -
6c
Popov SA.Tkachev AV. Tetrahedron: Asymmetry 1995, 6: 1013 -
7a
Rechsteiner B.Texier-Boullet F.Hamelin J. Tetrahedron Lett. 1993, 34: 5071 -
7b
Martin DF.Janusonis GA.Martin BB. J. Am. Chem. Soc. 1961, 83: 73 - 8
Valduga CJ.Squizani A.Braibante HS.Braibante MEF. Synthesis 1998, 1019 - 9
Arcadi A.Bianchi G.Di Giuseppe S.Marinelli F. Green Chem. 2003, 64 - 10
Bartoli G.Bosco M.Locatelli M.Marcantoni E.Melchiorre P.Sambri L. Synlett 2004, 239 - 11
Khosropour AR.Khodaei MM.Kookhazadeh M. Tetrahedron Lett. 2004, 45: 1725 -
12a
Bartoli G.Marcantoni E.Sambri L. Synlett 2003, 2101 -
12b
Yadav JS.Reddy BVS.Rao CV.Chand PK.Prasad AR. Synlett 2002, 137 -
12c
Yadav JS.Reddy BVS.Reddy MS.Sabitha G. Synlett 2001, 1134 -
12d
Bellucci MC.Bosco M.Sambri L. J. Org. Chem. 2000, 65: 2830 -
13a
Ranu BC.Dey SS. Tetrahedron Lett. 2003, 44: 2865 -
13b
Ranu BC.Dey SS.Hajra A. Tetrahedron 2003, 44: 2417
References
Typical Experimental Procedure (Method A): To a mixture of ethyl acetoacetate (1.0 mmol) and aniline (1.0 mmol) under solvent-free conditions, CeCl3·7H2O (0.1 mmol) was added and the reaction mixture stirred at r.t. for the appropriate time according to Table [2] . After completion of the reaction as indicated by TLC, the mixture was washed with EtOAc. The crude products were separated by preparative chromatography on silica gel using n-heptane-EtOAc (10:1) as eluent. The pure b-enaminones were prepared in 50-87% yields.
15
Typical Experimental Procedure (Method B): To the molten of TBAB (0.5 mmol), CeCl3·7H2O (0.1 mmol) was added and the mixture cooled to r.t., then ethyl acetoacetate (1.0 mmol) and aniline (1.0 mmol) were added to it. The reaction mixture stirred magnetically at r.t. for the appropriate time as shown in Table
[2]
. The reaction was followed by TLC. When the reaction was completed, the mixture washed with EtOAc. The crude products were separated by preparative chromatography on silica gel using n-heptane/EtOAc (10:1) as eluent. The pure b-enaminones were prepared in 74-99% yields. Selected characterization data of compounds 8, 11, 13 and 20 are shown below.
Compound 8: mp 110-111 °C. IR (KBr): nmax = 3240, 2923, 1668, 1584, 1250, 1012, 955, 763 cm-1. 1H NMR (200 MHz, CDCl3): dH = 8.32 (br, 1 H, NH), 4.28 (t, J = 8.7 Hz, 2 H), 3.75 (t, J = 5.8, 2 H), 3.41 (q, J = 5.1, 2 H), 3.18 (br, 1 H, OH), 2.75 (t, J = 7.3 Hz, 2 H), 2.1 (s, 3 H, CH3). 13C NMR (50 MHz, CDCl3): dc = 174.8, 158.4, 156.9, 85.2, 65.8, 62.1 45.7, 26.9. Anal. Calcd for C8H13NO3: C, 56.13; H, 7.65; N, 8.18. Found: C, 56.00; H, 7.70; N, 8.30.
Compound 11: mp 92-94 °C IR (KBr): nmax = 3182, 3072, 2900, 1666, 1637, 1245, 1019, 955 cm-1. 1H NMR (200 MHz, CDCl3): dH = 9.9 (br, 1 H, NH), 7.25-7.00 (m, 4 H, Ar), 4.42 (t, J = 8 Hz, 2 H, OCH2), 3.03 (t, J = 8.1 Hz, 2 H, =C-CH2-), 2.45 (s, 3 H, CH3), 2.08 (s, 3 H, CH3). 13C NMR (50 MHz, CDCl3): dc = 174.4, 154.5, 147.8, 136.8, 135.2, 130.1, 124.9, 88.9, 65.8, 26.9, 21.3. Anal. Calcd for C13H15NO2: C, 71.86; H, 6.95; N, 6.45. Found: C, 71.60; H, 7.00; N, 6.70.
Compound 13: mp 105-107 °C; IR (KBr): nmax = 3288, 2895, 1679, 1618, 1440, 1017, 760, 740, 696 cm-1. 1H NMR (200 MHz, CDCl3): dH = 8.72 (s, 1 H, NH), 7.42-7.20 (m, 5 H, Ph), 4.46 (d, J = 3.9 Hz, 2 H, CH2N), 4.32 (t, J = 4.7 Hz, 2 H, OCH2), 2.85 (t, J = 4.8 Hz, 2 H, CH2C=), 1.95 (s, 3 H, CH3). 13C NMR (50 MHz, CDCl3): dc = 174.6, 168.0, 157.4, 139.3, 129.2, 127.8, 127.0, 86.5, 65.6, 53.6, 47.1, 26.9, 16.8. Anal. Calcd for C13H15NO2: C, 71.90; H, 7.00; N, 6.50. Found: C, 71.60; H, 7.00; N, 6.70.
Compound 20: mp 177-179 °C. IR (KBr): nmax = 3360, 3120, 1525, 1512, 1080, 800, 748, 705 cm-1. 1H NMR (200 MHz, CDCl3): dH = 11.6 (s, 2 H, NH), 8.17-7.1 (m, 10 H, Ph), 5.70 (s, 2 H, =CH-), 3.82-3.30 (m, 4 H, -CH2), 2.10 (s, 6 H, CH3). 13C NMR (50 MHz, CDCl3): dc = 188.7, 165.4, 140.5, 131.1, 128.7, 127.4, 93.4, 44.2, 19.7. Anal. Calcd for C22H24N2O2: C, 75.83; H, 6.94; N, 9.16. Found: C, 75.44; H, 6.80; N, 8.40.