Subscribe to RSS
DOI: 10.1055/s-2005-869832
An Expeditious Synthesis of Nocardiolactone
Publication History
Publication Date:
04 May 2005 (online)

Abstract
Nocardiolactone was synthesized by using a Crimmins asymmetric aldolization followed by a DMAP-mediated removal of the auxiliary with concurrent protection of the carboxylic group as a benzyl ester, activation of the β-hydroxyl group as a mesylate, hydrogenolysis of the benzyl ester, and a novel DBU-mediated lactonization that converted the syn-configuration to the trans one.
Key words
asymmetric synthesis - chiral auxiliaries - lactones - ring contractions - total synthesis
- 1
Mikami Y.Yazawa Y.Tanaka Y.Ritzau M.Grafe U. Nat. Prod. Lett. 1999, 13: 277 -
2a
Weibel EK.Hadvary P.Hochuli E.Kupfer E.Lengsfeld H. J. Antibiot. 1987, 40: 1081 -
2b
Hochuli E.Kupfer E.Maurer R.Mwister W.Mercadal Y.Schmidt K. J. Antibiot. 1987, 40: 1086 -
2c
Kondo S.Uotani K.Miyamoto M.Hazato T.Naganawa H.Aoyagi T.Umezawa H. J. Antibiot. 1978, 31: 797 -
2d
Mutoh M.Nakada N.Matsukuma S.Ohshima S.Yoshinari K.Watanabe J.Arisawa M. J. Antibiot. 1994, 47: 1369 -
2e
Yoshinari K.Aoki M.Ohtsuka T.Nakayama N.Itezono Y.Mutoh M.Watanabe J.Yokose K. J. Antibiot. 1994, 47: 1376 -
2f
Umezawa H.Aoyagi T.Uotani K.Hamada M.Takeuchi T.Takahashi S. J. Antibiot. 1980, 33: 1594 -
2g
Uotani K.Naganawa H.Kondo S.Aoyagi T.Umezawa H. J. Antibiot. 1982, 35: 1495 -
2h
Aldridge DC.Gile D.Turner WB. J. Chem. Soc. C 1971, 3888 -
2i
Greenspan MD.Yudkovitz JB.Lo CYL.Chen JS.Alberts AW.Hunt VM.Chang MN.Yang SS.Thompson KL.Chiang Y.-CP.Chabala JC.Monaghan RL.Schwartz RL. Proc. Natl. Acad. Sci. U.S.A. 1987, 84: 7488 -
2j
Tomoda H.Kumagai H.Tanaka H.Omura S. Biochim. Biophys. Acta 1987, 922: 351 -
2k
Tomoda H.Kumagai H.Takahashi Y.Tanaka Y.Iwai Y.Omura S. J. Antibiot. 1988, 41: 247 -
2l
Omura S.Tomoda H.Kumagai H.Greenspan MD.Yodkovits JB.Chen JS.Albert AW.Martin I.Mochales S.Monaghan RL.Chabala JC.Schwartz RE.Patchett AA. J. Antibiot. 1987, 40: 1356 -
3a
Crimmins MT.King BW.Tabet EA. J. Am. Chem. Soc. 1997, 119: 7883 -
3b
Crimmins MT.Chaudhary K. Org. Lett. 2000, 2: 775 -
3c
Crimmins MT.King BW.Tabet EA.Chaudhary K. J. Org. Chem. 2001, 66: 894 - 4
Mulzer J.Bruntrup G.Chucholowski A. Angew. Chem., Int. Ed. Engl. 1979, 18: 622 - 5
Adams W.Baeza J.Liu J.-C. J. Am. Chem. Soc. 1972, 94: 2000 - See, e.g.:
-
6a
Zhang Y.Gross RA.Lenz RW. Macromolecules 1990, 23: 3206 -
6b
Bernabei I.Castagnani R.De Angelis F.De Fusco E.Giannessi F.Misiti D.Muck S.Scafetta N.Tinti MO. Chem.-Eur. J. 1996, 2: 826 -
6c
De Angelis F.De Fusco E.Desiderio P.Giannessi F.Piccirilli F.Tinti MO. Eur. J. Org. Chem. 1999, 2705 -
6d For a prototype of ring-closure conditions (with Br as the leaving group instead of OMs), see:
Sato T.Kawara T.Nishizawa A.Fujisawa T. Tetrahedron Lett. 1980, 21: 3377 -
7a
Wu Y.-K.Sun Y.-P.Yang Y.-Q.Hu Q.Zhang Q. J. Org. Chem. 2004, 69: 6141 -
7b
For related precedents see: ref. [3] above.
-
7c
Su D.-W.Wang Y.-C.Yan T.-H. Tetrahedron Lett. 1999, 40: 4197 - 8
Delaunay D.Toupet L.Le Corre M. J. Org. Chem. 1995, 60: 6604 - 9
Weinbach SP.Jacquemain D.Leveiller F.Kjaer K.Als-Nielsen J.Leiserowitz L. J. Am. Chem. Soc. 1993, 115: 11110 - 10
Ho G.-J.Mathre DJ. J. Org. Chem. 1995, 60: 2271 - 11
Toshima H.Maru K.Saito M.Ichihara A. Tetrahedron 1999, 55: 5793 -
12a
Wu Y.-K.Sun Y.-P. Chem. Commun. 2005, 1906 -
12b
The dianion technique was unfortunately not applicable to the nocadiolactone synthesis, because the corresponding β-OH acid was resisting to the tosylation (presumably as a consequence of its insolubility in THF).
-
13a
Jiang X.-K. Acc. Chem. Res. 1988, 21: 362 -
13b
Jiang X.-K.Hui Y.-Z.Fan WQ. J. Am. Chem. Soc. 1984, 106: 3839 - See, e. g.:
-
16a
Grovenstein JE.Lee DE. J. Am. Chem. Soc. 1953, 75: 2639 -
16b
Cristol SJ.Norris WP. J. Am. Chem. Soc. 1953, 75: 2645 -
16c
Paquette LA.Fristad WE.Dime DS.Bailey TR. J. Org. Chem. 1980, 45: 3017 -
16d
Murahashi S.Naota T.Tanigawa Y. Org. Synth., Coll. Vol. VII Wiley and Sons; New York: 1990. p.172 -
16e
Fuller CE.Walker DG. J. Org. Chem. 1991, 56: 4066 -
16f
Mori K.Brevet J.-L. Synthesis 1991, 1125 -
16g
Pinhey JT.Stoermer MJ. J. Chem. Soc., Perkin Trans. 1 1991, 2455 -
16h
Brevet J.-L.Mori K. Synthesis 1992, 1007 -
16i
Matveeva ED.Erin AS.Kurz AL. Russian J. Org. Chem. 1997, 33: 1065 -
16j
Kim SH.Wei H.-X.Willis S.Li G. Synth. Commun. 1999, 29: 4179 -
16k
Kuang C.Senboku H.Tokuda M. Tetrahedron Lett. 2001, 42: 3893
References
The experimental procedure for the DBU-mediated HGA lactonization. DBU (8.5 µL, 0.056 mmol) was added slowly to a solution of 8 (0.056 mmol) in anhyd THF (1 mL) stirred at 0 °C. After completion of the addition, the mixture was stirred at the ambient temperature (ca. 11 °C) for 23 h before being diluted with Et2O (100 mL) and washed in turn with 2 N HCl, sat. NaHCO3, H2O and brine. The organic phase was dried over anhyd Na2SO4. After removal of the solvent the residue was chromatographed on silica gel (1:400 EtOAc-hexanes) to give 1 as a white needle (20 mg, 70%), along with 9 (8 mg, 30%).
Data for 1: a white needle, mp 64-66 °C (lit.
[4]
mp 66-68 °C). [α]D
21 -12.8 (c 0.30, CHCl3) {lit.
[4]
[α]D
21 -12.7 (c 2.5, CHCl3)}. 1H NMR (300 MHz, CDCl3): δ = 4.22 (ddd, J = 7.3, 6.1, 3.9 Hz, 1 H), 3.17 (ddd, J = 9.0, 6.3, 3.8 Hz, 1 H), 1.86-1.68 (m, 3 H), 1.43-1.20 (m, 56 H), 0.88 (t, J = 6.8 Hz, 6 H). IR (KBr): 2955, 2918, 2851, 1806, 1472, 1145, 862, 717 cm-1. MS (EI): m/z (%) = 506 (10.27) [M+], 97 (100), 57 (89.72), 83 (79.90), 111 (63.27), 43 (60.00), 69 (58.15), 55 (54.80), 85 (41.53), 125 (37.18), 139 (18.69). ESI-HRMS: m/z calcd for C34H66O2Na [M + Na]+: 529.4939; found: 529.4955.
The FT-IR data for 9: FT-IR (KBr): 2955 (s), 2918 (s), 2849 (s), 2972 (s), 1472 (m), 1462 (m), 1435 (w), 1377 (w), 963 (m), 730 (m), 719 (m) cm-1 (intensity symbols: s for strong, m for medium, and w for weak).