Synlett 2006(19): 3340-3342  
DOI: 10.1055/s-2006-951540
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Short and Efficient Preparation of Enantiopure Secosyrins 1 and 2

Alexandros E. Koumbis*, Anastasia-Aikaterini C. Varvogli
Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
Fax: +30(2310)997679; e-Mail: akoumbis@chem.auth.gr;
Further Information

Publication History

Received 9 September 2006
Publication Date:
23 November 2006 (online)

Abstract

An alternative, short and efficient approach for the preparation of enantiopure secosyrins 1 and 2 is reported here. This uses a d-arabinose derivative as starting material and applies a HWE-IHMA strategy for the construction of the spiro-framework of target molecules.

    References and Notes

  • 1 Wong HNC. Eur. J. Org. Chem.  1999,  1757 
  • 2a Smith MJ. Mazzola EP. Sims JJ. Midland SL. Keen NT. Burton V. Stayton MM. Tetrahedron Lett.  1993,  34:  223 
  • 2b Midland SL. Keen NT. Sims JJ. Midland MM. Stayton MM. Burton V. Smith MJ. Mazzola EP. Graham KJ. Clardy J. J. Org. Chem.  1993,  58:  2940 
  • 3a Keen NT. Tamaki S. Kobayashi D. Gerhold D. Stayton MM. Shen H. Gold S. Lorang J. Thordal-Christensen H. Dahlbeck D. Staskawicz B. Mol. Plant Microbe Interact.  1990,  3:  112 
  • 3b Keen NT. Buzzell RI. Theoret. Appl. Genet.  1991,  81:  133 
  • 4 Midland SL. Keen NT. Sims JJ. J. Org. Chem.  1995,  60:  1118 
  • Selected publications:
  • 5a Atkinson MM. Midland SL. Sims JJ. Keen NT. Plant Physiol.  1996,  112:  297 
  • 5b Tsurushima T. Midland SL. Zeng C.-M. Ji C. Sims JJ. Keen NT. Phytochemistry  1996,  43:  1219 
  • 5c Ji C. Okinaka Y. Takeuchi Y. Tsurushima T. Buzzell RI. Sims JJ. Midland SL. Slaymaker D. Yoshikawa M. Yamaoka N. Keen NT. Plant Cell  1997,  9:  1425 
  • 5d Ji C. Boyd C. Slaymaker D. Okinaka Y. Takeuchi Y. Midland SL. Sims JJ. Herman E. Keen NT. Proc. Natl. Acad. Sci. U.S.A.  1998,  95:  3306 
  • 5e Tsurushima T. Ji C. Okinaka Y. Takeuchi Y. Sims JJ. Midland SL. Yoshikawa M. Yamaoka N. Keen NT. Dev. Plant Pathol.  1998,  13:  139 
  • 5f Slaymaker DH. Keen NT. Plant Sci.  2004,  166:  387 
  • 6a Kuwahara S. Moriguchi M. Miyagawa K. Konno M. Kodama O. Tetrahedron Lett.  1995,  36:  3201 
  • 6b Kuwahara S. Moriguchi M. Miyagawa K. Konno M. Kodama O. Tetrahedron  1995,  51:  8809 
  • 6c Wood JL. Jeong S. Salcedo A. Jenkins J. J. Org. Chem.  1995,  60:  286 
  • 6d Honda T. Mizutani H. Kanai K. J. Org. Chem.  1996,  61:  9374 
  • 6e Henschke JP. Rickards RW. Tetrahedron Lett.  1996,  37:  3557 
  • 6f Ishihara J. Sugimoto T. Murai A. Synlett  1996,  335 
  • 6g Zeng C.-M. Midland SL. Keen NT. Sims JJ. J. Org. Chem.  1997,  62:  4780 
  • 6h Yoda H. Kawauchi M. Takabe K. Ken H. Heterocycles  1997,  45:  1895 
  • 6i Ishihara J. Sugimoto T. Murai A. Tetrahedron  1997,  53:  16029 
  • 6j Yu P. Wang Q.-G. Mak TCW. Wong HNC. Tetrahedron  1998,  54:  1783 
  • 6k Di Florio R. Rizzacasa MA. Austr. J. Chem.  2000,  53:  327 
  • 6l Chenevert R. Dasser M. Can. J. Chem.  2000,  78:  275 
  • 6m Chenevert R. Dasser M. J. Org. Chem.  2000,  65:  4529 
  • 7a Yu P. Yang Y. Zhang ZY. Mak TCW. Wong HNC. J. Org. Chem.  1997,  62:  6359 
  • 7b Mukai C. Moharram SM. Hanaoka M. Tetrahedron Lett.  1997,  38:  2511 
  • 7c Mukai C. Moharram SM. Azukizawa S. Hanaoka M. J. Org. Chem.  1997,  62:  8095 
  • 7d Yoda H. Kawauchi M. Takabe K. Hosoya K. Heterocycles  1997,  45:  1903 
  • 7e Krishna PR. Narsingam M. Kannan V. Tetrahedron Lett.  2004,  45:  4773 
  • 7f Wong HNC. Pure Appl. Chem.  1996,  68:  335 
  • 8a Carda M. Castillo E. Rodriguez S. Falomir E. Alberto Marco J. Tetrahedron Lett.  1998,  39:  8895 
  • 8b Donohoe TJ. Fisher JW. Edwards PJ. Org. Lett.  2004,  6:  465 
  • 9a Koumbis AE. Dieti KM. Vikentiou MG. Gallos JK. Tetrahedron Lett.  2003,  44:  2513 
  • 9b Gallos JK. Stathakis CI. Kotoulas SS. Koumbis AE. J. Org. Chem.  2005,  70:  6884 
  • 9c Koumbis AE. Chronopoulos D. Tetrahedron Lett.  2005,  46:  4353 
  • 11a Fleet GWJ. Mathews CJ. Seijas JA. Tato MPV. Brown DJ. J. Chem. Soc., Perkin Trans. 1  1989,  1065 
  • 11b Pakulski Z. Zamojksi A. Tetrahedron  1995,  51:  871 
  • Compounds 5 and 6 have been previously prepared from d-mannitol, following an alternative synthetic scheme:
  • 12a Toyota M. Hirota M. Hirano H. Ihara M. Org. Lett.  2000,  2:  2031 
  • 12b Kagawa N. Ihara M. Toyota M. Org. Lett.  2006,  8:  875 
  • 13 Maryanoff BE. Reitz AB. Chem. Rev.  1989,  89:  863 
  • 14a

    Compound 10: oil; [α]D 25 -48.3 (c 1.6, CHCl3). IR (neat): 3032, 2987, 2936, 2890, 1780, 1641, 1455, 1372, 1259, 1213, 1071, 1029, 888, 852, 739, 700 cm-1. 1 H NMR (300 MHz, CDCl3): δ = 7.39-7.30 (m, 5 H), 6.07 (s, 1 H), 4.93 and 4.85 (dABq, J = 18.0, 1.8 Hz, 2 H), 4.67 and 4.51 (ABq, J = 12.2 Hz, 2 H), 4.43 (d, J = 4.9 Hz, 1 H), 4.33 (ddd, J = 7.0, 6.1, 4.9 Hz, 1 H), 4.03 (dd, J = 8.6, 7.0 Hz, 1 H), 3.82 (dd, J = 8.6, 6.1 Hz, 1 H), 1.40 (s, 3 H), 1.34 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 172.9, 166.6, 136.7, 128.7, 128.3, 127.9, 118.6, 110.1, 76.10, 75.2, 72.5, 72.1, 65.2, 26.0, 24.9. HRMS (MALDI-FTMS): m/e calcd for C17H20O5Na [M + Na]+: 327.1208; found: 327.1207.

  • 14b

    Compound 14: oil; [α]D 25 -5.3 (c 0.8, MeOH). IR (neat): 3445, 2930, 2910, 1779, 1456, 1398, 1207, 1077, 1012, 741, 699 cm-1. 1 H NMR (300 MHz, CDCl3): δ = 7.40-7.31 (m, 5 H), 4.76 and 4.60 (ABq, J = 12.2 Hz, 2 H), 4.45-4.41 (m, 1 H), 4.37 and 4.28 (ABq, J = 10.4 Hz, 2 H), 4.11 (dd, J = 10.4, 4.9 Hz, 1 H), 3.83 (dd, J = 10.4, 2.5 Hz, 1 H), 3.82 (d, J = 1.8 Hz, 1 H), 2.98 and 2.56 (ABq, J = 18.3 Hz, 2 H), 2.74 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 175.7, 137.1, 128.7, 128.2, 127.7, 87.4, 86.2, 76.5, 74.7, 73.3, 72.5, 35.4. HRMS (MALDI-FTMS): m/e calcd for C14H16O5Na [M + Na]+: 287.0895; found: 287.0894.

  • 15 Wang ES. Choy YM. Wong HNC. Tetrahedron  1996,  52:  12137 
10

Preliminary results of this work were presented at the 1st European Chemistry Congress, Budapest, Hungary, August 2006, p. 329 (N-PO-94).

16

The 3-O-TBS derivative instead of the 3-O-benzyl derivative (12).

17

Compound 15 was found to have identical physical and spectra data with those reported in ref. 7c.

18

Compounds 2a and 2b were found to have physical and spectral data identical to those reported in ref. 7a.

19

To the best of our knowledge, these are the highest overall yields reported so far for the total synthesis of both secosyrins.