Subscribe to RSS
DOI: 10.1055/s-2006-951559
Efficient Consecutive Alkylation-Knoevenagel Functionalisations in Formyl Aza-Heterocycles Using Supported Organic Bases
Publication History
Publication Date:
23 November 2006 (online)
Abstract
An efficient solution-phase parallel procedure to perform the structural diversification of some formyl aza-heterocycles employing supported organic bases (PS-BEMP, PS-TBD or Si-TBD) is described. The library synthesis is based on a consecutive alkylation-Knoevenagel functionalisation that employs alkyl halides, Michael acceptors, and malonic acid derivatives as diversity elements.
Key words
supported bases - catalysis - consecutive functionalisations - Knoevenagel condensation - Michael addition
- 1
Zaragoza F.Dörwald X. Organic Synthesis on Solid Phase Vol. 2: Wiley-VCH; Weinheim: 2002. -
2a
Boger DL.Desharnais J.Capps K. Angew. Chem. Int. Ed. 2003, 42: 4138 -
2b
An H.Dan Cook P. Chem. Rev. 2000, 100: 3311 -
2c
Nefzi A.Ostresch JM.Houghten RA. Chem. Rev. 1997, 97: 449 -
3a
Kirschning A.Monenschein A.Wittemberg R. Angew. Chem. Int. Ed. 2001, 40: 650 -
3b
Ley SV.Baxendale IR.Bream RN.Jackson PS.Leach AG.Longbottom DA.Nesi M.Scott JS.Storer RI.Taylor SJ. J. Chem. Soc., Perkin Trans. 1 2000, 3815 - 4
Collins I. J. Chem. Soc., Perkin Trans. 1 2000, 2845 -
6a
Schwesinger R.Willaredt J.Schemper H.Keller M.Schmitt D.Fritz H. Chem. Ber. 1994, 127: 2435 -
6b
Bensa D.Constantieux T.Rodriguez J. Synthesis 2004, 923 -
6c
Graybill TL.Thomas S.Wang MA. Tetrahedron Lett. 2002, 43: 5305 -
6d
Adams G. Tetrahedron Lett. 2003, 44: 5041 -
7a
Alhambra C.Castro J.Chiara JL.Fernández E.Fernández Mayorales A.Fiandos JM.García-Ochoa S.Martín Ortega MD. Tetrahedron Lett. 2001, 42: 6675 -
7b
Xu W.Mohan R.Morrissey M. Bioorg. Med. Chem. Lett. 1998, 8: 1089 -
7c
Ley SV.Massi A. J. Chem. Soc., Perkin Trans. 1 2000, 3645 -
7d
Caldarelli M.Habermann J.Ley SV. J. Chem. Soc., Perkin Trans. 1 1999, 107 -
7e
Baxendale IR.Ley SV. Bioorg. Med. Chem. Lett. 2000, 10: 1983 -
7f
McComas W.Chen L.Kim K. Tetrahedron Lett. 2000, 41: 3573 -
7g
Schwesinger R. Nachr. Chem., Tech. Lab. 1990, 38: 1214 -
8a
Subba Rao YV.De Vos DE.Jacobs PA. Angew. Chem., Int. Ed. Engl. 1997, 36: 2261 -
8b
Fringuelli F.Pizzo F.Vittoriani C.Vaccaro L. Chem. Commun. 2004, 2756 -
8c
Xu W.Mohan R.Morrissey M. Tetrahedron Lett. 1997, 38: 7337 -
8d
Organ MG.Dixon CE. Biotechnol. Bioeng. Comb. Chem. 2000, 71: 71 -
8e
Iijima K.Fukuda W.Tomoi M. J. Macromol. Sc., Part A: Pure Appl. Chem. 1992, 29: 249 -
8f
Tamura Y.Fukuda W.Tomoi M. Synth. Commun. 1994, 24: 2907 -
8g
Boisnard S.Chastanet J.Zhu J. Tetrahedron Lett. 1999, 7469 -
8h
Chiara JL.Encinas L.Díaz B. Tetrahedron Lett. 2005, 46: 2445 - 9
Ye W.Xu J.Tan C.-T.Tan C.-H. Tetrahedron Lett. 2005, 46: 6875 -
10a
Smith JT.Zeiler HJ. History and Introduction In Handbook of Experimental Pharmacology Vol. 127: Springer; Berlin: 1998. p.1-11 -
10b
Pharmaceutical Substances: Synthesis, Patents, Applications
Kleemann A.Engel J. Thieme; Stuttgart: 2001. -
10c
Riesbeck K. J. Chemother. 2002, 14: 3 -
10d
Milata V.Claramunt R.Elguero J.Zalupski P. Targets Heterocycl. Syst. 2000, 4: 167 -
10e
Brown EM.Reeves DS. Antibiot. Chemother. 1997, 419 -
10f
Hirai K. Nippon Kagaku Ruoho Gakkai Zusshi 2005, 53: 349 -
10g
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 - 11
Sotelo E.Fraiz N.Yáñez M.Laguna R.Cano E.Brea J.Raviña E. Bioorg. Med. Chem. Lett. 2002, 12: 1575 - 12
Amaresh RR.Perumal PT. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1997, 36: 541 - For publications related to the catalysis of Knoevenagel reaction by supported reagents, see:
-
13a
Isobe K.Hoshi T.Suzuki T.Hagiwara H. Mol. Divers. 2005, 9: 317 -
13b
Zeng R.Fu X.Gong C.Sui Y.Ma X.Yang X. J. Mol. Catal. A: Chem. 2005, 229: 1 ; and references cited therein -
13c
Strohmeier GA.Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 621 -
14a
Hadjeri M.Mariotte AM.Boomendjel A. Chem. Pharm. Bull. 2001, 49: 1352 -
14b
Baket D.Sasaki H.Kinoshita T.Tsutsumi H.Sakane K. Bull. Chem. Soc. Jpn. 1996, 69: 1371 - 15
Brown DJ. In The Pyridazines I, Chemistry of Heterocyclic CompoundsTaylor EC.Wipf P. Wiley; New York: 2000. p.56 - 16
Sundberg RJ. Indoles Academic Press; London: 1996. -
17a
www.silicycle.com.
-
17b
www.sigma-aldrich.com.
- For publications related to the aza-Michael reaction by supported reagents, see:
-
18a
Fetterly BM.Jana NK.Verkade JG. Tetrahedron 2006, 62: 440 -
18b
Bartoli G.Bartolacci M.Giuliani A.Marcantoni E.Massaccessi M.Torregiani E. J. Org. Chem. 2005, 70: 169
References and Notes
Relative base strength of supported bases used in this study; the pKa values reported for the conjugated acids of their corresponding non-supported analogues are: TBD: 25.44 (MeCN, 25 °C), BEMP: 27.63 (MeCN, 25 °C); see ref. 6a. Supported reagents employed in this work were purchased from Fluka (PS-BEMP), Argonaut (PS-TBD) and Silicycle (Si-TBD).
19Representative Procedure for the Alkylation-Knoevenagel (Method A) or Aza-Michael-Knoevenagel (Method B) Sequences: In a coated Kimble vial was charged a mixture of the scaffold A1-A3 (0.60 mmol) in the appropriate solvent [THF (3 mL) for A1 or A3, toluene for A2]. The supported organic base (1.5 mmol of PS-TBD 2 for method A, 0.12 mmol for method B) and the alkyl halide (0.66 mmol; method A) or the Michael acceptor (0.72 mmol; method B) were added at the appropriate temperature (40 °C for A1 and A3, r.t. for A2 in method A, 60 °C for all scaffolds in method B). The sample was vortexed for 30 min to give the corresponding N-blocked adduct. Addition of the appropriate malonic acid derivative (1.1 equiv, stirring for 4-14 h; see Figure [4] ) to the adduct at the appropriate temperature (40 °C for A1, 60 °C for A2, r.t. for A3 in method A; 50 °C, 60 °C and r.t. for A1, A2 and A3, respectively in method B) in the corresponding solvent, led to the Knoevenagel product after simple filtration of the supported reagents by a fritted syringe. Evaporation of the solvent and purification by a parallel short chromatographic filtration (on silica gel) employing a vacuum manifold (Visiprep®) to remove the small excess of malonic acid derivative afforded pure samples that were characterised by spectroscopic and analytical data.
20Complete details of the synthesis and spectral characteristics of the compounds obtained will be published elsewhere in a full paper. All compounds gave satisfactory spectral data (1H NMR, 13C NMR, FTIR, MS). Yields given correspond to the isolated pure compounds. Chromatographic filtration for all compounds was carried out using EtOAc-hexane (1:4) as eluent mixture. Selected physical and spectral data for some compounds are as follows: A1B4D3: mp 218-219 °C (i-PrOH); yield: 70%. IR (KBr): 2233 (CN), 1709 (CO), 1665 (CO), 1599 (Ar) cm-1. 1H NMR (300 MHz, CDCl3): δ = 9.12 (s, 1 H, CH), 8.88 (s, 1 H, CH), 8.47 (d, J = 8.2 Hz, 1 H, Ar), 7.50-7.64 (m, 1 H, Ar), 7.33-7.43 (m, 4 H, Ar), 7.19-7.23 (m, 3 H, Ar), 5.42 (s, 2 H, CH2), 4.34 (q, J = 7.2 Hz, 2 H, CH2), 1.35 (t, J = 7.2 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 358 (11) [M+], 285 (100), 91 (16). HRMS: m/z [M+] calcd for C22H18N2O3: 358.1317; found: 358.1316. A2B4D3: mp 130-131 °C (i-PrOH); yield: 67%. IR (KBr): 2209 (CN), 1747 (CO), 1578 (Ar), 1094 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.61 (s, 1 H, CH), 8.60 (s, 1 H, CH), 7.83-7.86 (m, 1 H, Ar), 7.27-7.35 (m, 6 H, Ar), 7.15-7.18 (m, 2 H, Ar), 5.41 (s, 2 H, CH2), 4.37 (q, J = 7.1 Hz, 2 H, CH2), 1.39 (t, J = 7.1 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 330 (75) [M+], 183 (1), 139 (2), 91 (100). A3B1D2: mp 220-221 °C (i-PrOH); yield: 79%. IR (KBr): 2229 (CN), 1727 (CO), 1659 (CO), 1580 (Ar), 1083 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.92 (s, 1 H, CH), 7.44-7.53 (m, 4 H, Ar + CH), 7.35-7.39 (m, 2 H, Ar), 3.92 (s, 3 H, CH3), 3.89 (s, 3 H, CH3). MS (70 eV): m/z (%) = 295 (100) [M+], 236 (100), 208 (35), 164 (30). HRMS: m/z [M+] calcd for C16H13N3O3: 295.0957; found: 295.0955. A1C4D2: mp 186-187 °C (i-PrOH); yield: 70%. IR (KBr): 2220 (CN), 1717 (CO), 1624 (CO), 1584 (Ar), 1093 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 9.10 (s, 1 H, CH), 8.81 (s, 1 H, CH), 8.47 (d, J = 8.2 Hz, 1 H, Ar), 7.70-7.74 (m, 1 H, Ar), 7.45-7.48 (m, 2 H, Ar), 4.54 (t, J = 6.7 Hz, 2 H, CH2), 4.15 (q, J = 7.2 Hz, 2 H, CH2), 3.86 (s, 3 H, CH3), 2.91 (t, J = 6.7 Hz, 2 H, CH2), 1.20 (t, J = 7.2 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 354 (16) [M+], 323 (4), 295 (100), 267 (16). A2C1D3: mp 153-154 °C (i-PrOH); yield: 80%. IR (KBr): 2215 (CN), 1721 (CO), 1589 (Ar), 1039 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.55 (s, 1 H, CH), 8.54 (s, 1 H, CH), 7.86 (dd, J = 1.6, 5.1 Hz, 1 H, Ar), 7.35-7.45 (m, 3 H, Ar), 4.57 (t, J = 6.9 Hz, 2 H, CH2), 4.37 (q, J = 7.1 Hz, 2 H, CH2), 2.94 (t, J = 6.9 Hz, 2 H, CH2), 1.35 (t, J = 7.1 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 293 (100) [M+], 253 (64), 225 (26), 179 (9). A3C2D1: mp 127-128 °C (i-PrOH); yield: 65%. IR (KBr): 2235 (CN), 1736 (COO), 1670 (CO), 1588 (Ar), 1092 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.51-7.55 (m, 5 H, Ar), 7.47 (s, 1 H, CH), 7.34 (s, 1 H, CH), 4.38 (t, J = 6.9 Hz, 2 H, CH2), 3.67 (s, 3 H, CH3), 2.90 (t, J = 6.9 Hz, 2 H, CH2). MS (70 eV): m/z (%) = 334 (22) [M+], 303 (16), 275 (26), 247 (50), 234 (100), 222 (25), 191 (23).