Subscribe to RSS
DOI: 10.1055/s-2007-967985
An Efficient DABCO-Catalyzed Ireland-Claisen Rearrangement of Allylic Acrylates
Publication History
Publication Date:
24 January 2007 (online)
Abstract
A novel DABCO-catalyzed Ireland-Claisen [3,3]-rearrangement of allylic acrylates to give α-methylene-γ,δ-unsaturated carboxylic acids in the presence of an excess of TMSCl and DBU in refluxing acetonitrile was developed. The protocol provides an easy entry to α-methylene-γ,δ-unsaturated carboxylic acids from allylic alcohols in good yields.
Key words
DABCO - allylic acrylates - Ireland-Claisen rearrangement - α-methylene-γ,δ-unsaturated carboxylic acids
- 1 For an excellent review on the thermal, aliphatic Claisen rearrangement, see:
Ziegler FE. Chem. Rev. 1988, 88: 1423 -
2a
Ireland RE.Mueller RH. J. Am. Chem. Soc. 1972, 94: 5897 -
2b
Ireland RE.Mueller RH.Willard AF. J. Am. Chem. Soc. 1976, 98: 2868 -
2c
Ireland RE.Wipf P.Armstrong JD. J. Org. Chem. 1991, 56: 650 -
2d
Gilbert JC.Yin J.Fakhreddine FH.Karpinski ML. Tetrahedron 2004, 60: 51 - For excellent recent reviews, see:
-
3a
Martin-Castro AM. Chem. Rev. 2004, 104: 2939 -
3b
Chai Y.-H.Hong S.-p.Lindsay HA.McFarland C.McIntosh C. Tetrahedron 2002, 58: 2905 - For sequential 1,4-addition-Claisen rearrangement, see:
-
3c
Aoki Y.Kuwajima I. Tetrahedron Lett. 1990, 31: 7457 -
3d
Takai K.Ueda T.Kaihara H.Sunami Y.Moriwake T. J. Org. Chem. 1996, 61: 8728 - 4
Srikrishna A.Lakshmi BV. Tetrahedron Lett. 2005, 46: 4879 - 5
Louis I.Hungerford LN.Humphries EJ.McLeod MD. Org. Lett. 2006, 8: 1117 - 6
Bandur NG.Harms K.Koert U. Synlett 2005, 773 - 7
Viseux EME.Parsons PJ.Pavey JBJ.Carter CM.Pinto I. Synlett 2003, 1856 - 8
Wilson MS.Woo JCS.Dake GR. J. Org. Chem. 2006, 71: 4237 - 9
Troll T.Wiedemann J. Tetrahedron Lett. 1992, 33: 3847 - 10
Hanamoto T.Baba Y.Inanaga J. J. Org. Chem. 1993, 58: 299 - 11
Smith PM.Thomas EJ. J. Chem. Soc., Perkin Trans. 1 1998, 3541 -
12a
Ciganek E. Org. React. 1997, 51: 201 -
12b
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 - 13 The unexpected superiority of DABCO over more basic tertiary amine catalysts in the Baylis-Hillman reaction between acrylamide and aldehydes has been reported. See:
Faltin C.Fleming EM.Connon SJ. J. Org. Chem. 2004, 69: 6496 - 14
Shieh W.Dell S.Bach A.Repič O.Blacklock TJ. J. Org. Chem. 2003, 68: 1854 - 16
Ghosh N. Synlett 2004, 574 - 18 For a computational study on boat or chair preferences in the Ireland-Claisen rearrangements of cylohexenyl silyl ketene acetals, see:
Khaledy MM.Kalani MYS.Khuong KS.Houk KN. J. Org. Chem. 2003, 68: 572 - 19 For a review on this topic, see:
Hoffmann HMR.Rabe J. Angew. Chem., Int. Ed. Engl. 1985, 24: 94 - 20
Cateni F.Zilic J.Zacchigna M.Bonivento P.Frausin F.Scarcia V. Eur. J. Med. Chem. 2006, 41: 192 ; and references cited therein
References and Notes
General Procedure of the Rearrangement.
A reaction flask was charged with the allylic acrylate 3 (32.4 mmol), DABCO (0.73 g, 6.5 mmol), TMSCl (10.58 g, 97.4 mmol), DBU (9.90 g, 65.0 mmol) and MeCN (75 mL). The mixture was heated under reflux and the reaction was monitored by GC or TLC until the reaction was complete (reaction time as specified in Table
[1]
). Then, the volatiles were removed under reduced pressure. The residue was suspended in Et2O (100 mL) and stirred with 3 N HCl (40 mL) for a couple of minutes. The organic layer was separated, and washed sequentially with brine and H2O, dried over anhyd MgSO4 and concentrated in vacuo. The residue was purified by column chromatography or subjected to bulb-to-bulb distillation or recrystallization from EtOH to afford the pure compounds 4a-h as a colorless oil and 4i-j as a white solid (Table
[1]
).
All new compounds have been isolated in pure form and characterized by spectral data (NMR, IR and MS).
Selected Data for Compounds 4.
Compound 4c: 1H NMR (300 MHz, CDCl3): δ = 12.23 (br, 1 H), 6.33 (s, 1 H), 5.67 (br s, 1 H), 5.52 (dd, J = 15.5, 6.1 Hz, 1 H), 5.42 (dt, J = 15.5, 6.1 Hz, 1 H), 2.99 (d, J = 6.1 Hz, 2 H), 2.30 (dsept, J = 6.1, 6.8 Hz, 1 H), 1.00 (2 d, J = 6.8 Hz, 6 H). 13C NMR (75 MHz, CDCl3): δ = 173.0 (s), 140.5 (d), 139.5 (s), 127.3 (t), 123.0 (d), 34.1 (t), 31.1 (d), 22.4 (2q). IR (KBr): ca. 3000, 1698, 1436, 1289, 1158, 952 cm-1. MS (EI): m/z = 154 [M]+, 111 [M - C3H7]+.
Compound 4e: 1H NMR (300 MHz, CDCl3): δ = ca. 11.1 (br, 1 H), 6.32 (s, 1 H), 5.68 (s, 1 H), 5.15 (t, J = 7.2 Hz, 1 H), 3.03 (d, J = 7.2 Hz, 2 H), 2.08 (br q, J = 7.5 Hz, 2 H), 2.07 (q, J = 7.5 Hz, 2 H), 1.03 (t, J = 7.5 Hz, 3 H), 0.97 (t, J = 7.5 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 173.1 (s), 145.6 (s), 139.5 (s), 126.9 (t), 118.2 (d), 29.2 (2 t), 23.2 (t), 12.1 (q), 12.8 (q). IR (KBr): ca. 3000, 1698, 1629, 1434, 1283, 1155, 954 cm-1. MS (EI): m/z = 168 [M]+, 139 [M - C2H5]+.
Compound 4f (major trans-isomer): 1H NMR (300 MHz, CDCl3): δ = ca. 11.0 (br, 1 H), 6.31 (s, 1 H), 5.65 (s, 1 H), 5.23 (t, J = 7.2 Hz, 1 H), 3.01 (d, J = 7.2 Hz, 2 H), 2.30 (sept, J = 6.8 Hz, 1 H), 1.60 (s, 3 H), 1.03 (2 d, J = 6.8 Hz, 6 H). 13C NMR (75 MHz, CDCl3): δ = 173.1 (s), 144.1 (s), 139.1 (s), 126.8 (t), 117.6 (d), 36.8 (d), 29.4 (t), 21.4 (2q), 13.3 (q). IR (KBr,): ca. 3000, 1695, 1630, 1434, 1284, 1156, 952
cm-1. MS (EI): m/z = 168 [M]+, 125 [M - C3H7]+.
Compound 4j: 1H NMR (300 MHz, CDCl3): δ = 7.34 (d, J = 11.4 Hz, 1 H), 6.55 (dd, J = 14.7, 10.5 Hz, 1 H), 6.39 (dd, J = 14.7, 11.4 Hz, 1 H), 6.22 (dd, J = 14.1, 10.5 Hz, 1 H), 5.96 (dq, J = 14.1, 6.8 Hz, 1 H), 1.95 (s, 3 H), 1.85 (d, J = 6.8 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 173.7 (s), 141.0 (2 d), 135.0 (d), 131.6 (d), 125.2 (d), 125.0 (s), 18.6 (q), 12.3 (q). IR: (KBr): ca. 3000, 1678, 1601, 1427, 1316, 1268, 987, 929 cm-1. MS (EI): m/z = 152 [M]+, 107 [M - CO2H]+.
Compound 4k: 1H NMR (400 MHz, CDCl3): δ = 6.47 (s, 1 H), 5.92 (s, 1 H), 5.75 (s, 1 H), 3.19 (s, 2 H), 2.24 (s, 2 H), 2.22 (s, 2 H), 1.05 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 28.3 (2 q), 33.7 (s), 39.6 (t), 43.8 (t), 51.0 (t), 125.8 (d), 130.3 (t), 136.0 (s), 161.1 (s), 171.1 (s), 200.6 (s). IR: (KBr): ca. 3000, 2929, 1720, 1667, 1372, 1160, 982 cm-1. MS (EI): m/z = 208 [M]+, 163 [M - CO2H]+.