Subscribe to RSS
DOI: 10.1055/a-1344-6175
Synthesis of Amidine Derivatives by Intermolecular Radical Addition to Nitrile Groups of AIBN Derivatives
We thank the National Key R&D Program of China (Grant No. 2017YFA0700103), the NSFC (Grant Nos. 21602028, 21672213, 21871258), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000), and the Haixi Institute of CAS (Grant No. CXZX-2017-P01) for financial support.
Dedicated to Professor Xue-Long Hou on the occasion of his 65th birthday.
Abstract
A synthesis of amidine derivatives through intermolecular addition of nitrogen-centered radicals to nitriles is reported. Experimental studies and density functional theory calculations were conducted to probe the mechanism of this reaction. The results suggest that the alkyl nitriles are activated by attracting chlorine atoms and are subsequently attacked by nitrogen-centered radicals, resulting in the intermolecular radical addition of nitriles to amidines.
Key words
amidines - nitriles - catalyst-free reaction - nitrogen-centered radicals - intermolecular radical additionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1344-6175.
- Supporting Information
Publication History
Received: 21 October 2020
Accepted after revision: 02 January 2021
Accepted Manuscript online:
02 January 2021
Article published online:
22 January 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Aly AA, Bräse S, Gomaa MA. M. ARKIVOC 2018; (vi): 85
- 1b Greenhill JV, Lue P. Prog. Med. Chem. 1993; 30: 203
- 1c Kaneda M. J. Antibiot. 2002; 55: 924
- 1d Prevorsek D. J. Phys. Chem. 1962; 66: 769
- 1e Soeiro MN. C, Werbovetz K, Boykin DW, Wilson WD, Wang MZ, Hemphill A. Parasitology 2013; 140: 929
- 2a Crone WJ. K, Vior NM, Santos-Aberturas J, Schmitz LG, Leeper FJ, Truman AW. Angew. Chem. Int. Ed. 2016; 55: 9639
- 2b Shimamura H, Gouda H, Nagai K, Hirose T, Ichioka M, Furuya Y, Kobayashi Y, Hirono S, Sunazuka T, Ōmura S. Angew. Chem. Int. Ed. 2009; 48: 914
- 3 Roholt K, Nielsen B, Kristensen E. Chemotherapy 1975; 21: 146
- 4 Ledet MM, Anderson R, Harman R, Muth A, Thompson PR, Coonrod SA, Van de Walle GR. BMC Cancer 2018; 18: 412
- 5a Buckman BO, Chou Y.-L, McCarrick M, Liang A, Lentz D, Mohan R, Morrissey MM, Shaw KJ, Trinh L, Light DR. Bioorg. Med. Chem. Lett. 2005; 15: 2249
- 5b Yin Z, Zhang Z, Zhu J, Wong H, Kadow JF, Meanwell NA, Wang T. Tetrahedron Lett. 2005; 46: 4919
- 6a Charette AB, Grenon M. Tetrahedron Lett. 2000; 41: 1677
- 6b Das VK, Thakur AJ. Tetrahedron Lett. 2013; 54: 4164
- 7 Chavan NL, Naik NH, Nayak SK, Kusurkar RS. ARKIVOC 2010; (ii): 248
- 8a Hagadorn JR, McNevin MJ. Organometallics 2003; 22: 609
- 8b Obenauf J, Kretschmer WP, Bauer T, Kempe R. Eur. J. Inorg. Chem. 2013; 537
- 9a Meilahn MK, Augenstein LL, McManaman JL. J. Org. Chem. 1971; 36: 3627
- 9b Wu Y, Chen X, Zhang M.-M. Synthesis 2020; 52: 1773
- 9c Youn SW, Lee EM. Org. Lett. 2016; 18: 5728
- 9d Shriner RL, Neumann FW. Chem. Rev. 1944; 35: 351
- 10a Duchamp E, Hanessian S. Org. Lett. 2020; 22: 8487
- 10b Garigipati RS. Tetrahedron Lett. 1990; 31: 1969
- 11 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007: 403
- 12 Androvič L, Bartáček J, Sedlák M. Res. Chem. Intermed. 2016; 42: 5133
- 13 De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F. Org. Lett. 2007; 9: 2721
- 14 Xie Y, Guo S, Wu L, Xia C, Huang H. Angew. Chem. Int. Ed. 2015; 54: 5900
- 15a Barolli JP, Maia PI. S, Colina-Vegas L, Moreira J, Plutin AM, Mocelo R, Deflon VM, Cominetti MR, Camargo-Mathias MI, Batista AA. Polyhedron 2017; 126: 33
- 15b Kang Q.-Q, Liu Y, Huang X.-J, Li Q, Wei W.-T. Eur. J. Org. Chem. 2019; 7673
- 15c Yu J, Sheng H.-X, Wang S.-W, Xu Z.-H, Tang S, Chen S.-L. Chem. Commun. 2019; 55: 4578
- 15d Liu Y, Meng Y.-N, Huang X.-J, Qin F.-H, Wu D, Shao Q, Guo Z, Li Q, Wei W.-T. Green Chem. 2020; 22: 4593
- 16a Zhang C, Pi J, Chen S, Liu P, Sun P. Org. Chem. Front. 2018; 5: 793
- 16b Yang T, Xia W.-J, Shang J.-Q, Li Y, Wang X.-X, Sun M, Li Y.-M. Org. Lett. 2019; 21: 444
- 16c Li Y.-M, Wang S.-S, Yu F, Shen Y, Chang K.-J. Org. Biomol. Chem. 2015; 13: 5376
- 16d Wang S.-S, Fu H, Shen Y, Sun M, Li Y.-M. J. Org. Chem. 2016; 81: 2920
- 16e Ji L, Gu W, Liu P, Sun P. Org. Biomol. Chem. 2020; 18: 6126
- 17a Grivas JC, Taurins A. Can J. Chem. 1961; 39: 761
- 17b Rousselet G, Capdevielle P, Maumy M. Tetrahedron Lett. 1993; 34: 6395
- 18 Zhu N, Li Y, Bao H. Org. Chem. Front. 2018; 5: 1303
-
19
2-{[2-Chloro-1-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-2-methylpropylidene]amino}-2-methylpropanenitrile (3aa); Typical ProcedureA Schlenk tube containing a stirrer bar was charged with N-chlorophthalimide (1a; 0.5 mmol, 1 equiv), AIBN (2a; 1.25 mmol, 2.5 equiv), and o-xylene (2 mL) under N2, and the mixture was stirred at 90 °C in an oil bath for 6 h. The mixture was then cooled to rt and purified by flash column chromatography [silica gel, PE–EtOAc (20:1)] to give a white solid; yield: 144.5 mg (92%); mp 181.4–182.4 °C.IR (KBr): 2998, 2940, 2228, 1785, 1738, 1665 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.97–7.90 (m, 2 H), 7.82–7.75 (m, 2 H), 1.88 (s, 6 H), 1.68 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 166.77, 150.02, 134.94, 131.68, 124.63, 120.96, 71.28, 53.61, 32.00, 29.88. HRMS (ESI): m/z [M + Na]+ calcd for C16H16ClN3NaO2: 340.0823; found: 340.0827.The structure of 3aa was confirmed by single-crystal x-ray analysis. CCDC 2022501 contains the supplementary crystallographic data for this compound. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures