Subscribe to RSS
DOI: 10.1055/s-0032-1318026
Commercial Manufacture of Halaven®: Chemoselective Transformations En Route to Structurally Complex Macrocyclic Ketones
Publication History
Received: 13 November 2012
Accepted after revision: 18 December 2012
Publication Date:
10 January 2013 (online)
Abstract
The evolution of the synthesis of Halaven® (E7389, INN eribulin mesylate) from a medicinal chemistry process to the execution of the final process on pilot scale is described. The completion of the synthesis of Halaven® from C1–C13 ester and C14–C35 sulfone alcohol involves a series of chemo-, regio-, and stereoselective transformations. Furthermore, a high-dilution macrocyclization presented a number of challenges for industrial-scale manufacture (throughput, processing time, and side reactions). This paper describes studies at Eisai leading to an understanding, optimization, and control of the chemistry that realized the reproducible commercial production of Halaven®.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
Primary Data
- for this article are available online at http://www.thieme-connect.com/ejournals/toc/synthesis (X-ray crystallographic files in CIF format for compounds 2 and 16) and can be cited using the following DOI:
- Primary Data
-
References and Notes
- 1a Uemura D, Takahashi K, Yamamoto T, Katayama C, Tanaka J, Okumura Y, Hirata Y. J. Am. Chem. Soc. 1985; 107: 4796
- 1b Hirata Y, Uemura D. Pure Appl. Chem. 1986; 58: 701
- 2a Aicher TD, Buszek KR, Fang FG, Forsyth CJ, Jung SH, Kishi Y, Matelich MC, Scola PM, Spero DM, Yoon SK. J. Am. Chem. Soc. 1992; 114: 3162
- 2b Jackson KL, Henderson JA, Motoyoshi H, Phillips AJ. Angew. Chem. Int. Ed. 2009; 48: 2346
- 2c Yamamoto A, Ueda A, Brémond P, Tiseni PS, Kishi Y. J. Am. Chem. Soc. 2012; 134: 893
- 2d Jackson KL, Henderson JA, Phillips AJ. Chem. Rev. 2009; 109: 3044 ; and references cited therein
- 3a Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, Aalfs KK, Welsh S, Zheng W, Seletsky BM, Palme MH, Habgood GJ, Singer LA, DiPietro LV, Wang Y, Chen JJ, Quincy DA, Davis A, Yoshimatsu K, Kishi Y, Yu MJ, Littlefield BA. Cancer Res. 2001; 61: 1013
- 3b Zheng W, Seletsky BM, Palme MH, Lydon PJ, Singer LA, Chase CE, Lemelin CA, Shen Y, Davis H, Tremblay L, Towle MJ, Salvato KA, Wels BF, Aalfs KK, Kishi Y, Littlefield BA, Yu MJ. Bioorg. Med. Chem. Lett. 2004; 14: 5551
- 3c Littlefield BA, Palme MH, Seletsky BM, Towle MJ, Yu MJ, Zheng W. US 6214865, 2001
- 3d Littlefield BA, Palme MH, Seletsky BM, Towle MJ, Yu MJ, Zheng W. US 6365759, 2002
- 3e Littlefield BA, Palme MH, Seletsky BM, Towle MJ, Yu MJ, Zheng W. WO 9965894, 1999
- 3f Yu MJ, Kishi Y, Littlefield BA In Anticancer Agents from Natural Products . Cragg GM, Kingston DG. I, Newman DJ. CRC Press; Boca Raton: 2005: 241-265
- 3g Austad B, Chase CE, Fang FG. WO 2005118565, 2005
- 3h Newman S. Curr. Opin. Invest. Drugs 2007; 8: 1057
- 3i Vahdat LT, Pruitt B, Fabian CJ, Rivera RR, Smith DA, Tan-Chiu E, Wright J, Tan AR, DaCosta NA, Chuang E, Smith J, O’Shaughnessy J, Shuster DE, Meneses NL, Chandrawansa K, Fang F, Cole PE, Ashworth S, Blum JL. J. Clin. Oncol. 2009; 27: 2954
- 3j Chiba H, Tagami K. J. Synth. Org. Chem. Jpn. 2011; 69: 600
- 4 See accompanying article: Austad BC, Benayouda F, Calkins TL, Campagna S, Chase CE, Choi H.-w, Christ W, Costanzo R, Cutter J, Endo A, Fang FG, Hu Y, Lewis BM, Lewis MD, McKenna S, Noland TA, Orr JD, Pesant M, Schnaderbeck MJ, Wilkie GD, Abe T, Asai N, Asai Y, Kayano A, Kimoto Y, Komatsu Y, Kubota M, Kuroda H, Mizuno M, Nakamura T, Omae T, Ozeki N, Suzuki T, Takigawa T, Watanabe T, Yoshizawa K. Synlett 2013; 24: 327
- 5 See accompanying article: Chase CE, Fang FG, Lewis BM, Wilkie GD, Schnaderbeck MJ, Zhu X. Synlett 2013; 24: 323
- 6 Unpublished information.
- 7a Langer P, Wuckelt J, Döring M, Görls H. J. Org. Chem. 2000; 65: 3603
- 7b Magnus PD. Tetrahedron 1977; 33: 2019
- 8 The experiment was carried out with 3 (170 mg), deprotonated with n-BuLi (2.05 equiv), and coupled with 1 equiv of the doubly deuterated aldehyde D/D-5. After workup and reverse-phase column separation, the recovered aldehyde was found to contain 25% deuterium incorporation on the basis of 1H NMR analysis and H integration. However, 1H NMR analysis of the recovered sulfone indicated that deuterium had not been incorporated. LC–MS analysis of the isolated products revealed that the main products were sulfone–diol coupled adduct D/D-6 doubly deuterated at C2, monodeuterated aldehyde D/H-5, and 3.
- 9 See Ref. 4
- 10a Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
- 10b Dess DB, Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
- 11 Acceleration effect of water on Dess–Martin periodinane mediated oxidations: Meyer SD, Schreiber SL. J. Org. Chem. 1994; 59: 7549
- 12 Wan Z.-K, Choi H.-W, Kang F.-A, Nakajima K, Demeke D, Kishi Y. Org. Lett. 2002; 4: 4431
- 13 Catalytic NHK macrocyclization process that does not require high-dilution conditions: Namba K, Kishi Y. J. Am. Chem. Soc. 2005; 127: 15382
- 14 Stamos DP, Sheng C, Chen SS, Kishi Y. Tetrahedron Lett. 1997; 38: 6355
- 15a Namba K, Jun H.-S, Kishi Y. J. Am. Chem. Soc. 2004; 126: 7770
- 15b Kaburagi Y, Kishi Y. Tetrahedron Lett. 2007; 48: 8967
- 15c Dong C.-G, Henderson JA, Kaburagi Y, Sasaki T, Kim D.-S, Kim JT, Urabe D, Guo H, Kishi Y. J. Am. Chem. Soc. 2009; 131: 15642
- 16 Hu Y. WO 2009124237, 2009
Halaven® (1) is a fully synthetic macrocyclic ketone analogue of the marine natural product halichondrin B. See:
First total synthesis of halichondrin B:
Total synthesis of norhalichondrin B by Phillips:
Total synthesis of halichondrin C:
Review of synthetic work on halichondrins:
For discovery and development of Halaven® (1), see:
Ion-exchange-resin-based protocol is reported for effective construction of Halaven®/halichondrin C8–C14 polycyclic ring system: