Subscribe to RSS
DOI: 10.1055/s-0040-1706552
Recent Developments in Transition-Metal-Free Functionalization and Derivatization Reactions of Pyridines
Financial support from the National Natural Science Foundation of China (Grants Nos. 21772110 and 21822304) is acknowledged.
![](https://www.thieme-connect.de/media/synlett/202102/lookinside/thumbnails/st-2020-r0394-c_10-1055_s-0040-1706552-1.jpg)
Abstract
Pyridine is an important structural motif that is prevalent in natural products, drugs, and materials. Methods that functionalize and derivatize pyridines have gained significant attention. Recently, a large number of transition-metal-free reactions have been developed. In this review, we provide a brief summary of recent advances in transition-metal-free functionalization and derivatization reactions of pyridines, categorized according to their reaction modes.
1 Introduction
2 Metalated Pyridines as Nucleophiles
2.1 Deprotonation
2.2 Halogen–Metal exchange
3 Activated Pyridines as Electrophiles
3.1 Asymmetric 2-Allylation by Chiral Phosphite Catalysis
3.2 Activation of Pyridines by a Bifunctional Activating Group
3.3 Alkylation of Pyridines by 1,2-Migration
3.4 Alkylation of Pyridines by [3+2] Addition
3.5 Pyridine Derivatization by Catalytic In Situ Activation Strategies
3.6 Reactions via Heterocyclic Phosphonium Salts
4 Radical Reactions for Pyridine Functionalization
4.1 Pyridine Functionalization through Radical Addition Reactions
4.2 Pyridine Functionalization through Radical–Radical Coupling Reactions
5 Derivatization of Pyridines through the Formation of Meisenheimer-Type Pyridyl Anions
6 Conclusion
Publication History
Received: 13 July 2020
Accepted after revision: 30 September 2020
Article published online:
28 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2 Shen K, Fu Y, Li J.-N, Liu L, Guo Q.-X. Tetrahedron 2007; 63: 1568
- 3 Murakami K, Yamada S, Kaneda T, Itami K. Chem. Rev. 2017; 117: 9302
- 4 Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
- 5a Trécourt F, Mallet M, Marsais F, Quéguiner G. J. Org. Chem. 1988; 53: 1367
- 5b Busto E, Gotor-Fernández V, Gotor V. Adv. Synth. Catal. 2006; 348: 2626
- 5c Rocca P, Cochennec C, Marsais F, Thomas-dit-Dumont L, Mallet M, Godard A, Quéguiner G. J. Org. Chem. 1993; 58: 7832
- 5d Cochennec C, Rocca P, Marsais F, Godard A, Quéguiner G. Synthesis 1995; 1995: 321
- 5e Arzel E, Rocca P, Marsais F, Godard A, Quéguiner G. Tetrahedron Lett. 1998; 39: 6465
- 5f Gros P, Fort Y, Quéguiner G, Caubère P. Tetrahedron Lett. 1995; 36: 4791
- 6a Clososki GC, Rohbogner CJ, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7681
- 6b Wunderlich SH, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7685
- 6c Rohbogner CJ, Wirth S, Knochel P. Org. Lett. 2010; 12: 1984
- 6d Frischmuth A, Fernández M, Barl NM, Achrainer F, Zipse H, Berionni G, Mayr H, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7928
- 6e Rohbogner CJ, Wunderlich SH, Clososki GC, Knochel P. Eur. J. Org. Chem. 2009; 2009: 1781
- 6f Wunderlich SH, Rohbogner CJ, Unsinn A, Knochel P. Org. Process Res. Dev. 2010; 14: 339
- 6g Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
- 6h Mosrin M, Knochel P. Org. Lett. 2009; 11: 1837
- 7a Kessar SV, Singh P, Singh KN, Dutt M. J. Chem. Soc., Chem. Commun. 1991; 570
- 7b Schwab P, Fleischer F, Michl J. J. Org. Chem. 2002; 67: 443
- 7c Kessar SV, Singh P. Chem. Rev. 1997; 97: 721
- 8a Jaric M, Haag BA, Unsinn A, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 5451
- 8b Jaric M, Haag BA, Manolikakes SM, Knochel P. Org. Lett. 2011; 13: 2306
- 8c Manolikakes SM, Jaric M, Karaghiosoff K, Knochel P. Chem. Commun. 2013; 49: 2124
- 9a Negishi E, King AO, Okukado N. J. Org. Chem. 1977; 42: 1821
- 9b Negishi E.-i, Valente LF, Kobayashi M. J. Am. Chem. Soc. 1980; 102: 3298
- 9c Wang G, Yin N, Negishi E.-i. Chem. Eur. J. 2011; 17: 4118
- 10a Bernhardt S, Manolikakes G, Kunz T, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9205
- 10b Colombe JR, Bernhardt S, Stathakis C, Buchwald SL, Knochel P. Org. Lett. 2013; 15: 5754
- 10c Manolikakes G, Ellwart M, Stathakis CI, Knochel P. Chem. Eur. J. 2014; 20: 12289
- 10d Chen Y.-H, Ellwart M, Malakhov V, Knochel P. Synthesis 2017; 49: 3215
- 11 Balkenhohl M, Ziegler DS, Desaintjean A, Bole LJ, Kennedy AR, Hevia E, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 12898
- 12 Benischke AD, Anthore-Dalion L, Berionni G, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 16390
- 13a Molander GA. Chem. Rev. 1992; 92: 29
- 13b Molander GA, Harris CR. Chem. Rev. 1996; 96: 307
- 13c Krief A, Laval A.-M. Chem. Rev. 1999; 99: 745
- 14 Kobayashi S, Manabe K. Acc. Chem. Res. 2002; 35: 209
- 15 Joule JA, Mills K. Heterocyclic Chemistry, 4th ed. Blackwell; Oxford: 2000: 66
- 16 Motaleb A, Rani S, Das T, Gonnade RG, Maity P. Angew. Chem. Int. Ed. 2019; 58: 14104
- 17 Fier PS. J. Am. Chem. Soc. 2017; 139: 9499
- 18 Fier PS, Kim S, Cohen RD. J. Am. Chem. Soc. 2020; 142: 8614
- 19 Llaveria J, Leonori D, Aggarwal VK. J. Am. Chem. Soc. 2015; 137: 10958
- 20 Stymiest JL, Dutheuil D, Mohmood E, Aggarwal VK. Angew. Chem. Int. Ed. 2007; 46: 7491
- 21 Panda S, Coffin A, Nguyen QN, Tantillo DJ, Ready JM. Angew. Chem. Int. Ed. 2016; 55: 2205
- 22 Jo W, Kim J, Choi S, Cho SH. Angew. Chem. Int. Ed. 2016; 55: 9690
- 23a Han S, Chakrasali P, Park J, Oh H, Kim S, Kim K, Pandey AK, Han SH, Kim IS. Angew. Chem. Int. Ed. 2018; 57: 12737
- 23b Ghosh P, Kwon NY, Han S, Kim S, Han SH, Mishra NK, Jung YH, Chung SJ, Kim IS. Org. Lett. 2019; 21: 6488
- 24a Stout DM, Meyers AI. Chem. Rev. 1982; 82: 223
- 24b Lavilla R. J. Chem. Soc., Perkin Trans. 1 2002; 1141
- 24c Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
- 24d Edraki N, Mehdipour AR, Khoshneviszadeh M, Miri R. Drug Discovery Today 2009; 14: 1058
- 25a Rueping M, Dufour J, Schoepke FR. Green Chem. 2011; 13: 1084
- 25b Ouellet SG, Walij AM, MacMillan DW. C. Acc. Chem. Res. 2007; 40: 1327
- 25c Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
- 26a Hao L, Harrod JF, Lebuis A.-M, Mu Y, Shu R, Samuel E, Woo H.-G. Angew. Chem. Int. Ed. 1998; 37: 3126
- 26b Harrod JF, Shu R, Woo H.-G, Samuel E. Can. J. Chem. 2001; 79: 1075
- 26c Jeong J, Park S, Chang S. Chem. Sci. 2016; 7: 5362
- 26d Intemann J, Bauer H, Pahl J, Maron L, Harder S. Chem. Eur. J. 2015; 21: 11452
- 26e Königs CD. F, Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 10076
- 26f Lee S.-H, Gutsulyak DV, Nikonov GI. Organometallics 2013; 32: 4457
- 26g Gutsulyak DV, van der Est A, Nikonov GI. Angew. Chem. Int. Ed. 2011; 50: 1384
- 27 Fan X, Zheng J, Li Z.-H, Wang H. J. Am. Chem. Soc. 2015; 137: 4916
- 28 Liu Z.-Y, Wen Z.-H, Wang X.-C. Angew. Chem. Int. Ed. 2017; 56: 5817
- 29 Tian J.-J, Yang Z.-Y, Liang X.-S, Liu N, Hu C.-Y, Tu X.-S, Li X, Wang X.-C. Angew. Chem. Int. Ed. 2020; 59: 18452
- 30 Rao B, Chong C.-C, Kinjo R. J. Am. Chem. Soc. 2018; 140: 652
- 31 Hynes T, Welsh EN, McDonald R, Ferguson MJ, Speed AW. H. Organometallics 2018; 37: 841
- 32 Gu Y, Shen Y, Zarate C, Martin R. J. Am. Chem. Soc. 2019; 141: 127
- 33 Jo W, Baek S.-y, Hwang C, Heo J, Baik M.-H, Cho SH. J. Am. Chem. Soc. 2020; 142: 13235
- 34a Anders E, Markus F. Tetrahedron Lett. 1987; 28: 2675
- 34b Anders E, Markus F. Chem. Ber. 1989; 122: 113
- 34c Anders E, Markus F. Chem. Ber. 1989; 122: 119
- 34d Haas M, Goerls H, Anders E. Synthesis 1998; 1998: 195
- 34e Sugimoto O, Tanji K.-I, Sato A. Heterocycles 2009; 78: 2735
- 34f Sugimoto O, Shimada M, Sato A, Tanji K.-I. Heterocycles 2011; 83: 837
- 34g Deng Z, Lin J.-H, Xiao J.-C. Nat. Commun. 2016; 7: 10337
- 35a Hilton MC, Dolewski RD, McNally A. J. Am. Chem. Soc. 2016; 138: 13806
- 35b Dolewski RD, Hilton MC, McNally A. Synlett 2018; 29: 8
- 35c Anderson RG, Jett BM, McNally A. Tetrahedron 2018; 74: 3129
- 35d Patel C, Mohnike M, Hilton MC, McNally A. Org. Lett. 2018; 20: 2607
- 35e Dolewski RD, Fricke PJ, McNally A. J. Am. Chem. Soc. 2018; 140: 8020
- 35f Anderson RG, Jett BM, McNally A. Angew. Chem. Int. Ed. 2018; 57: 12514
- 36a Markovic T, Rocke BN, Blakemore DC, Mascitti V, Willis MC. Chem. Sci. 2017; 8: 4437
- 36b Cox PA, Reid M, Leach AG, Campbell AD, King EJ, Lloyd-Jones GC. J. Am. Chem. Soc. 2017; 139: 13156
- 36c Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
- 37 Hilton MC, Zhang X, Boyle BT, Alegre-Requena JV, Paton RS, McNally A. Science 2018; 362: 799
- 38 Boyel BT, Hilton MC, McNally A. J. Am. Chem. Soc. 2019; 141: 15441
- 39 Jin J, MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 1565
- 40 Jin J, MacMillan DW. C. Nature 2015; 525: 87
- 41 Kim I, Kang G, Lee K, Park B, Kang D, Jung H, He Y.-T, Baik M.-H, Hong S. J. Am. Chem. Soc. 2019; 141: 9239
- 42a Moon Y, Park B, Kim I, Kang G, Shin S, Kang D, Baik M.-H, Hong S. Nat. Commun. 2019; 10: 4117
- 42b Kim N, Lee C, Kim T, Hong S. Org. Lett. 2019; 21: 9719
- 42c Mathi GR, Jeong Y, Moon Y, Hong S. Angew. Chem. Int. Ed. 2020; 59: 2049
- 43 Fu M.-C, Shang R, Zhao B, Wang B, Fu Y. Science 2019; 363: 1429
- 44 Bartolomeu A. deA, Silva RC, Brocksom TJ, Noël T, de Oliveira KT. J. Org. Chem. 2019; 84: 10459
- 45 Jung S, Shin S, Park S, Hong S. J. Am. Chem. Soc. 2020; 142: 11370
- 46a DiRocco DA, Dykstra K, Krska S, Vachal P, Conway DV, Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
- 46b Revil-Baudard VL, Vors J.-P, Zard SZ. Org. Lett. 2018; 20: 3531
- 46c Zhang X.-Y, Weng W.-Z, Liang H, Yang H, Zhang B. Org. Lett. 2018; 20: 4686
- 46d Pitre SP, Muuronen M, Fishman DA, Overman LE. ACS Catal. 2019; 9: 3413
- 46e Jian Y, Chen M, Yang C, Xia W.-J. Eur. J. Org. Chem. 2020; 1439
- 46f Ikarashi G, Morofuji T, Kano N. Chem. Commun. 2020; 56: 10006
- 47 Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
- 48 Zhou W, Miura T, Murakami M. Angew. Chem. Int. Ed. 2018; 57: 5139
- 49 Xu J.-h, Wu W.-b, Wu J. Org. Lett. 2019; 21: 5321
- 50 Moon Y, Lee W, Hong S. J. Am. Chem. Soc. 2020; 142: 12420
- 51a Fischer H. Chem. Rev. 2001; 101: 3581
- 51b Studer A. Chem. Eur. J. 2001; 7: 1159
- 51c Studer A. Chem. Soc. Rev. 2004; 033: 267
- 51d Leifert D, Studer A. Angew. Chem. Int. Ed. 2020; 59: 74
- 52 Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
- 53 Cuthbertson JD, MacMillan DW. C. Nature 2015; 519: 74
- 54 Nicastri MC, Lehnherr D, Lam Y.-h, DiRocco DA, Rovis T. J. Am. Chem. Soc. 2020; 142: 987
- 55 Lehnherr D, Lam Y.-h, Nicastri MC, Liu J, Newman JA, Regalado EL, DiRocco DA, Rovis T. J. Am. Chem. Soc. 2020; 142: 468
- 56 Wang G, Zhang H, Zhao J, Li W, Cao J, Zhu C, Li S. Angew. Chem. Int. Ed. 2016; 55: 5985
- 57 Cao J, Wang G, Gao L, Cheng X, Li S. Chem. Sci. 2018; 9: 3664
- 58 Wang G, Cao J, Gao L, Chen W, Huang W, Cheng X, Li S. J. Am. Chem. Soc. 2017; 139: 3904
- 59 Cao J, Wang G, Gao L, Chen H, Liu X, Cheng X, Li S. Chem. Sci. 2019; 10: 2767
- 60 Gao L, Wang G, Cao J, Chen H, Gu Y, Liu X, Cheng X, Ma J, Li S. ACS Catal. 2019; 9: 10142
- 61 Koniarczyk JL, Greenwood JW, Alegre-Requena JV, Paton RS, McNally A. Angew. Chem. Int. Ed. 2019; 58: 14882
- 62 Seath CP, Vogt DB, Xu Z, Boyington AJ, Jui AT. J. Am. Chem. Soc. 2018; 140: 15525
- 63 Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 64 Zhang L, Jiao L. J. Am. Chem. Soc. 2017; 139: 607
- 65 Zhang L, Jiao L. Chem. Sci. 2018; 9: 2711
- 66 Yang H, Zhang L, Zhou F.-Y, Jiao L. Chem. Sci. 2020; 11: 742
- 67 Zhang L, Wu Z.-Q, Jiao L. Angew. Chem. Int. Ed. 2020; 59: 2095