Subscribe to RSS
DOI: 10.1055/s-2003-41486
The First Organocatalytic Hetero-Domino Knoevenagel-Diels-Alder-Epimerization Reactions: Diastereoselective Synthesis of Highly Substituted Spiro[cyclohexane-1,2′-indan]-1′,3′,4-triones
Publication History
Publication Date:
19 September 2003 (online)
Abstract
l-Proline and pyrrolidine catalyzed the three component hetero-domino Knoevenagel-Diels-Alder-Epimerization reactions of readily available precursors enones 1a-i, arylaldehydes 2a-i and 1,3-indandione 3 to furnish highly substituted prochiral spiro[cyclohexane-1,2′-indan]-1′,3′,4-triones 5a-i in a highly diastereoselective fashion with excellent yields. We demonstrate the first l-proline and pyrrolidine catalyzed epimerization reactions of trans-spiranes 6a-i to cis-spiranes 5a-i. Prochiral spiranes 5a-i are excellent starting materials for the synthesis of benzoannelated centropolyquinanes.
Key words
2-amino-1,3-butadiene - Diels-Alder reaction - domino reactions - organocatalysis - organic Lewis acid
-
1a
Tietze LF.Beifuss U. Angew. Chem., Int. Ed. Engl. 1993, 32: 131 -
1b
Tietze LF. Chem. Rev. 1996, 96: 115 -
1c
Tietze LF.Evers TH.Topken E. Angew. Chem. Int. Ed. 2001, 40: 903 -
1d
Oikawa Y.Hirasawa H.Yonemitsu O. Tetrahedron Lett. 1978, 1759 -
1e
Oikawa Y.Hirasawa H.Yonemitsu O. Chem. Pharm. Bull. 1982, 30: 3092 -
2a
Evans DA.Johnson JS. Comprehensive Asymmetric Catalysis Vol. 3:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; New York: 1999. p.1177 -
2b
Kagan HB.Riant O. Chem. Rev. 1992, 92: 1007 -
2c
Breslow R. Acc. Chem. Res. 1991, 24: 159 -
2d
Huang Y.Rawal VH. J. Am. Chem. Soc. 2002, 124: 9662 -
2e
Corey EJ.Perez AG. Angew. Chem. Int. Ed. 1998, 37: 388 ; Angew. Chem. 1998, 110, 402 -
3a
List B.Lerner RA.Barbas CF. J. Am. Chem. Soc. 2000, 122: 2395 -
3b
Sakthivel K.Notz W.Bui T.Barbas CF. J. Am. Chem. Soc. 2001, 123: 5260 -
3c
Cordova A.Notz W.Barbas CF. J. Org. Chem. 2002, 67: 301 -
3d
Chowdari NS.Ramachary DB.Cordova A.Barbas CF. Tetrahedron Lett. 2002, 43: 9591 -
3e
Northrup AB.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 6798 -
3f
Bogevig A.Juhl K.Kumaragurubaran N.Jorgensen KA. Chem. Commun. 2002, 620 -
3g
Nakadai M.Saito S.Yamamoto H. Tetrahedron 2002, 58: 8167 -
4a
Betancort JM.Sakthivel K.Thayumanavan R.Barbas CF. Tetrahedron Lett. 2001, 42: 4441 -
4b
Betancort JM.Barbas CF. Org. Lett. 2001, 3: 3737 -
4c
Paras NA.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 7894 -
4d
Enders D.Seki A. Synlett 2002, 26 -
4e
Halland N.Hazell RG.Jorgensen KA. J. Org. Chem. 2002, 67: 8331 -
4f
List B.Castello C. Synlett 2001, 11: 1687 -
4g
Halland N.Hazell RG.Jorgensen KA. J. Org. Chem. 2002, 67: 8331 -
5a
Notz W.Sakthivel K.Bui T.Barbas CF. Tetrahedron Lett. 2001, 42: 199 -
5b
Cordova A.Notz W.Zhong G.Betancort JM.Barbas CF. J. Am. Chem. Soc. 2002, 124: 1842 -
5c
Cordova A.Watanabe S.Tanaka F.Notz W.Barbas CF. J. Am. Chem. Soc. 2002, 124: 1866 -
5d
Watanabe S.Cordova A.Tanaka F.Barbas CF. Org. Lett. 2002, 4: 4519 -
5e
List B. J. Am. Chem. Soc. 2000, 122: 9336 -
6a
Thayumanavan R.Ramachary DB.Sakthivel K.Tanaka F.Barbas CF. Tetrahedron Lett. 2002, 43: 3817 -
6b
Ramachary DB.Chowdari NS.Barbas CF. Tetrahedron Lett. 2002, 43: 6743 -
6c
Northrup AB.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 2458 -
6d
Nakamura H.Yamamoto H. Chem. Commun. 2002, 1648 -
6e
Asato AE.Watanabe C.Li X.-Y.Liu RSH. Tetrahedron Lett. 1992, 33: 3105 -
7a
Hajos ZG.Parrish DR. J. Org. Chem. 1974, 39: 1615 -
7b
Eder U.Sauer G.Wiechert R. Angew. Chem., Int. Ed. Engl. 1971, 10: 496 -
7c
Bui T.Barbas CF. Tetrahedron Lett. 2000, 41: 6951 -
7d
Bogevig A.Juhl K.Kumaragurubaran N.Zhuang W.Jorgensen KA. Angew. Chem. Int. Ed. 2002, 41: 1790 -
7e
List B. J. Am. Chem. Soc. 2002, 124: 5656 -
7f
Rajagopal D.Moni MS.Subramanian S.Swaminathan S. Tetrahedron: Asymmetry 1999, 10: 1631 -
7g
Chowdari NS.Ramachary DB.Barbas CF. Org. Lett. 2003, 5: 1685 -
8a
Bredenkotter B.Florke U.Kuck D. Chem.-Eur. J. 2001, 7: 3387 -
8b
Tellenbroker J.Kuck D. Eur. J. Org. Chem. 2001, 1483 -
8c
Bredenkotter B.Barth D.Kuck D. Chem. Commun. 1999, 847 -
8d
Thommen M.Keese R. Synlett 1997, 231 -
8e
Seifert M.Kuck D. Tetrahedron 1996, 52: 13167 -
8f
Kuck D. Chem. Ber. 1994, 127: 409 -
8g
Kuck D.Schuster A.Krause RA. J. Org. Chem. 1991, 56: 3472 -
8h
Kuck D.Bogge H. J. Am. Chem. Soc. 1986, 108: 8107 -
8i
Hoeve WT.Wynberg H. J. Org. Chem. 1980, 45: 2925 -
8j
Hoeve WT.Wynberg H. J. Org. Chem. 1979, 44: 1508 -
11a
Tanikaga R.Konya N.Hamamura K.Kaji A. Bull. Chem. Soc. Jpn. 1988, 61: 3211 -
11b
Tietze LF.Beifuss U. The Knoevenagel Reaction, In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. Chap. 1.11. p.341-392 -
12a
Haslinger E.Wolschann P. Bull. Soc. Chim. Belg. 1977, 86: 907 -
12b
Margaretha P. Tetrahedron 1972, 28: 83
References
General Experimental Procedure for the Preparation of Prochiral Spiro[cyclohexane-1,2′-indan]-1′,3′,4-triones by Using
l
-Proline and Pyrrolidine Catalyzed Hetero-Domino Knoevenagel-Diels-Alder-Epimerization Reaction: Method A. In an ordinary glass vial equipped with a magnetic stirring bar, to 0.5 mmol of the aldehyde and 0.5 mmol of 1,3-indandione was added 1.0 mL of solvent, and then the catalyst l-proline (0.1 mmol) or pyrrolidine (0.15 mmol) was added and the reaction mixture was stirred at ambient temperature for 15-30 min. When the reaction mixture solidified, more solvent was added, 0.5 mL. Then 0.5 mmol of the enone was added and the reaction stirred at 70 °C for 1-2 h (Table
[2]
). The crude reaction mixture was treated with saturated aq NH4Cl solution, the layers were separated, and the organic layer was extracted three to four times with CH2Cl2 (10 mL), dried with anhyd Na2SO4, and evaporated. The pure Domino products were obtained by flash column chromatography (silica gel, mixture of hexane/EtOAc). Method B. In an ordinary glass vial equipped with a magnetic stirring bar, to 0.5 mmol of aldehyde, 0.5 mmol of enone, 0.5 mmol of 1,3-indandione was added 1.0 mL of solvent, and then the catalyst l-proline (0.1 mmol) or pyrrolidine (0.15 mmol) was added and the reaction mixture was heated slowly to 70 °C with stirring for 1-h. the Domino products were isolated as in Method A. Both methods gave identical results. (2β,6β)-2,6-Diphenylspiro[cyclohexane-1,2′-indan]-1′,3′,4-trione(5aa). Plane of symmetry with chair conformation. 1H NMR (399 MHz, CDCl3): δ = 7.64 (1 H, td, J = 7.6 and 1.2 Hz), 7.48 (1 H, m), 7.41 (2 H, m), 7.08-6.90 (10 H, m, 2 × Ph-H), 3.81 (4 H, m), 2.66 (2 H, ABq, J = 17.1 Hz). 13C NMR (100 MHz, CDCl3): δ = 208.4 (C, C=O), 203.4 (C, C=O), 201.8 (C, C=O), 142.7 (C, C-8′), 141.9 (C, C-9′), 137.3 (2 × C), 135.2 (2 × CH), 128.3 (4 × CH), 128.0 (4 × CH), 127.6 (2 × CH), 122.4 (CH), 122.0 (CH), 62.0 (C, C-1 or C-2′), 48.7 (2 × CH), 43.4 (2 × CH2). HRMS (MALDI-FTMS): m/z = 381.1492 [M + H+], calcd for C26H20O3H+ 381.1485. (2β,6α)-2,6-Diphenyl-spiro[cyclohexane-1,2′-indan]-1′,3′,4-trione(6aa).
C2-Symmetry with twist conformation. 1H NMR (399 MHz, CDCl3): δ = 7.57 (2 H, m), 7.52 (2 H, m), 7.08-6.90 (10 H, m, 2 × Ph-H), 3.99 (2 H, dd, J = 13.5 and 3.2 Hz, H-2 and 6), 3.62 (2 H, dd, J = 16.3 and 13.5 Hz, H-3β and 5β), 2.78 (2 H, dd, J = 16.7 and 3.2 Hz, H-3α and 5α). 13C NMR (100 MHz, CDCl3): δ = 210.0 (C, C=O), 202.8 (2 × C, C=O), 142.0 (2 × C, C-8′ and 9′), 137.2 (2 × C), 135.3 (2 × CH,
C-7′ and 4′), 128.3 (4 × CH), 128.1 (4 × CH), 127.3 (2 × CH), 122.4 (2 × CH, C-5′ and 6′), 61.5 (C, C-1 or 2′), 43.4 (2 × CH, C-6 and 2), 41.5 (2 × CH2, C-3 and 5). HRMS (MALDI-FTMS): m/z = 403.1300 [M + Na+], calcd for C26H20O3Na+ 403.1305.
Formation of the kinetic product, trans-spirane 6aa as the major isomer in ionic liquids, as opposed to the cis-spirane 5aa through the endo-transition state in the classical Diels-Alder route is likely explained by unique solvation in the ionic liquid of the 2-amino-1,3-butadiene 9a and dienophile 8a in the transition states shown below. Asymmetric solvation in the ionic liquids may produce a steric hindrance with the phenyl group on the dienophile, in the endo-transition state, thereby disfavoring it (Figure [1] ).