Subscribe to RSS
DOI: 10.1055/s-2005-922783
Phosphorodiamidic Acid as a Novel Structural Motif of Brønsted Acid Catalysts for Direct Mannich Reaction of N-Acyl Imines with 1,3-Dicarbonyl Compounds
Publication History
Publication Date:
16 December 2005 (online)
Abstract
Phosphorodiamidic acid 1 was developed as an efficient Brønsted acid catalyst for the direct Mannich reaction of N-acyl imines with 1,3-dicarbonyl compounds. Phosphorodiamidic acids were proposed as a novel structural motif of enantioselective Brønsted acid catalysts because they possess unique features, including the capability of introducing various substituents to the nitrogen atoms and the preparation from readily available chiral diamines in a short step. We demonstrated that chiral phosphorodiamidic acid 1b derived from binaphthalene bis(sulfonamide) functioned as an enantioselective catalyst to give the Mannich product in an optically active form.
Key words
organocatalyst - Mannich reaction - green chemistry - asymmetric catalysis - imines
- Reviews on atom economy:
-
2a
Trost BM. Science 1991, 254: 1471 -
2b
Trost BM. Angew. Chem., Int. Ed. Engl. 1995, 34: 259 -
2c
Trost BM. Acc. Chem. Res. 2002, 35: 695 - Recent reviews on organocatalysis:
-
3a
Dalko PL.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
3b
Special issue on ‘Organic Catalysis’: Adv. Synth. Catal. 2004, 346.
-
3c
Special issue on ‘Enantioselective Organocatalysis’: Acc. Chem. Res. 2004, 37.
-
3d
Berkessel A.Gröger H. Asymmetric Organocatalysis - From Biomimetic Concepts to Powerful Methods for Asymmetric Synthesis Wiley-VCH; Weinheim: 2005. -
3e
Seayad J.List B. Org. Biomol. Chem. 2005, 3: 719 -
3f
Hayashi Y. J. Synth. Org. Chem. Jpn. 2005, 63: 464 - For reviews on Brønsted acid catalysis, see:
-
4a
Schreiner PR. Chem. Soc. Rev. 2003, 32: 289 -
4b
Pihko PM. Angew. Chem. Int. Ed. 2004, 43: 2062 - For selected recent examples of asymmetric Brønsted acid catalysis, see:
-
5a
Huang Y.Unni AK.Thadani AN.Rawal VH. Nature (London) 2003, 424: 146 -
5b
Joly GD.Jacobsen EN. J. Am. Chem. Soc. 2004, 126: 4102 -
5c
Thadani AN.Stankovic AR.Rawal VH. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5846 -
5d
Du H.Zhao D.Ding K. Chem.-Eur. J. 2004, 10: 5964 -
5e
Momiyama N.Yamamoto H. J. Am. Chem. Soc. 2005, 127: 1080 -
5f
Unni AK.Takenaka N.Yamamoto H.Rawal VH. J. Am. Chem. Soc. 2005, 127: 1336 -
5g
Fuerst DE.Jacobsen EN. J. Am. Chem. Soc. 2005, 127: 8964 -
5h
Rueping M.Sugiono E.Azap C.Theissmann T.Bolte M. Org. Lett. 2005, 7: 3781 -
5i
Zhuang W.Hazell RG.Jørgensen KA. Org. Biomol. Chem. 2005, 3: 2566 -
5j
Zhuang W.Poulsen TB.Jørgensen KA. Org. Biomol. Chem. 2005, 3: 3284 -
5k
Tonoi T.Mikami K. Tetrahedron Lett. 2005, 46: 6355 -
5l
Herrera RP.Sgarzani V.Bernardi L.Ricci A. Angew. Chem. Int. Ed. 2005, 44: 6576 -
6a
Lewis Acid Reagents: A Practical Approach
Yamamoto H. Oxford University Press; Oxford: 1999. -
6b
Lewis Acids in Organic Synthesis
Yamamoto H. Wiley-VCH; Weinheim: 2000. -
7a
Akiyama T.Itoh J.Yokota K.Fuchibe K. Angew. Chem. Int. Ed. 2004, 43: 1566 -
7b
Akiyama T.Morita H.Itoh J.Fuchibe K. Org. Lett. 2005, 7: 2583 -
8a
Uraguchi D.Terada M. J. Am. Chem. Soc. 2004, 126: 5356 -
8b
Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2004, 126: 11804 -
8c
Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2005, 127: 9630 - For stereoselective direct Mannich reaction catalyzed by achiral Brønsted acid, see:
-
9a
Wu Y.-S.Cai J.Hu Z.-Y.Lin G.-X. Tetrahedron Lett. 2004, 45: 8949 -
9b
Akiyama T.Matsuda K.Fuchibe K. Synlett 2005, 322 -
10a Review:
Lucet D.Le Gall T.Mioskowski C. Angew. Chem. Int. Ed. 1998, 37: 2581 ; and references therein -
10b
Corey EJ.Imwinkelried R.Pikul S.Xiang YB. J. Am. Chem. Soc. 1989, 111: 5493 -
10c
Corey EJ.Yu C.-M.Kim SS. J. Am. Chem. Soc. 1989, 111: 5495 -
12a For an excellent review of organocatalytic asymmetric direct Mannich reactions, see:
Córdova A. Acc. Chem. Res. 2004, 37: 102 - See also:
-
12b
Poulsen TB.Alemparte C.Saaby S.Bella M.Jørgensen KA. Angew. Chem. Int. Ed. 2005, 44: 2896 -
12c
See ref. 3d, Chapter 5.2.
- For metal complex-mediated asymmetric direct Mannich reactions, see:
-
13a
Juhl K.Gathergood N.Jørgensen KA. Angew. Chem. Int. Ed. 2001, 40: 2995 -
13b
Trost BM.Terrell LR. J. Am. Chem. Soc. 2003, 125: 338 -
13c
Matsunaga S.Kumagai N.Harada S.Shibasaki M. J. Am. Chem. Soc. 2003, 125: 4712 -
13d
Bernardi L.Gothelf AS.Hazell RG.Jørgensen KA. J. Org. Chem. 2003, 68: 2583 -
13e
Marigo M.Kjærsgaard A.Juhl K.Gathergood N.Jørgensen KA. Chem.-Eur. J. 2003, 9: 2359 -
13f
Matsunaga S.Yoshida T.Morimoto H.Kumagai N.Shibasaki M. J. Am. Chem. Soc. 2004, 126: 8777 -
13g
Hamashima Y.Sasamoto N.Hotta D.Somei H.Umebayashi N.Sodeoka M. Angew. Chem. Int. Ed. 2005, 44: 1525 -
13h
Yoshida T.Morimoto H.Kumagai N.Matsunaga S.Shibasaki M. Angew. Chem. Int. Ed. 2005, 44: 3470 -
13i
Kjærsgaard A.Jørgensen KA. Org. Biomol. Chem. 2005, 3: 804 -
13j
Kundsen KR.Jørgensen KA. Org. Biomol. Chem. 2005, 3: 1362 - 14
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: John Wiley and Sons, Inc.; New York: 1999. p.494-653 - 15
Nakamura Y.Matsubara R.Kobayashi S. Org. Lett. 2003, 5: 2481 - For binaphthalene bis(sulfonamide) derivatives as a chiral ligand for metal-based catalysts, see:
-
18a
Terada M.Motoyama Y.Mikami K. Tetrahedron Lett. 1994, 35: 6693 -
18b
Mikami K.Motoyama Y.Terada M. Inorg. Chim. Acta 1994, 222: 71 -
18c
Denmark SE.Christenson BL.O’Connor SP. Tetrahedron Lett. 1995, 36: 2219 -
18d
Shi M.Sui W.-S. Chirality 2000, 12: 574 -
18e
Ooi T.Saito A.Maruoka K. J. Am. Chem. Soc. 2003, 125: 3220 -
18f
Yus M.Ramon DJ.Prieto O. Tetrahedron: Asymmetry 2003, 14: 1103 -
18g
Ooi T.Ohmatsu K.Uraguchi D.Maruoka K. Tetrahedron Lett. 2004, 45: 4481 -
18h
Akiyama K.Mikami K. Tetrahedron Lett. 2004, 45: 7217 - For binaphthalene-derived diazaphosphepines as a chiral ligand for metal-based catalysts, see:
-
19a
Reetz MT.Oka H.Goddard R. Synthesis 2003, 1809 -
19b
Denmark SE.Fan Y. J. Am. Chem. Soc. 2003, 125: 7825 -
19c
Monti C.Gennari C.Steele RM.Piarulli U. Eur. J. Org. Chem. 2004, 3557 -
19d
Denmark SE.Beutner GL.Wynn T.Eastgate MD. J. Am. Chem. Soc. 2005, 127: 3774 - 23
Dubey PK.Kulkarni SM.Kumar RV. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2002, 41: 1305
References and Notes
Present address: Sagami Chemical Research Center, Ayase 252-1193, Japan.
11
Preparation of Phosphorodiamidic Acid (
1a).
N,N′-Ditosylbenzene-1,2-diamine (208.3 mg, 0.5 mmol), prepared according to the literature procedure,
[23]
was dissolved into pyridine (1 mL) under nitrogen atmosphere. To the resulting solution was added phosphorus oxychloride (115.0 mg, 0.75 mmol) at r.t. After being stirred for 12 h at ambient temperature, H2O (1 mL) was poured into the reaction mixture. The resulting suspension was stirred for additional 30 min. Then, EtOAc was added and all pyridine was removed by reverse extraction with 1 N HCl. The organic phase was dried over Na2SO4. After being concentrated, the residue was purified by column chromatography. Compound 1a was isolated as a white solid in 90% yield. 1H NMR (270 MHz, DMSO-d
6,): δ = 2.30 (6 H, s), 6.79-6.86 (2 H, m), 7.17-7.24 (2 H, m), 7.31 (4 H, d, J = 8.4 Hz), 8.02 (4 H, d, J = 8.4 Hz). 13C NMR (67.8 MHz, DMSO-d
6): δ = 21.0, 113.1 (d, J
P-C = 5.4 Hz), 122.9, 126.8 (t, J
P-C = 10.3 Hz), 127.9, 129.5, 135.7, 144.2. IR (KBr): 3425, 3072, 1375, 1175, 1119 cm-1. HRMS (ESI): m/z calcd for C20H19N2O6PS2 [M - H]-: 477.0349. Found: 477.0351.
The distribution of keto-enol tautomers of 3 in CDCl3 was measured by 1H NMR. The percentages of the enol form are listed as follows: 3a: 72%; 3b: 61%; 3c: >98%; 3d: 6%; 3e: 6%; 3f: 21%; 3g: <2%.
17Although in the case of unsymmetrical 1,3-dicarbonyl compounds, keto esters 3d,e and keto amide 3f, the diastereomeric mixtures were obtained, their ratios were changed during the course of experiment.
20Compound (R)-1b: [α]D 150 (c 0.99, CHCl3). 1H NMR (270 MHz, DMSO-d 6): δ = 3.33 (6 H, s), 6.23 (4 H, d, J = 8.1 Hz), 6.74 (2 H, d, J = 7.6 Hz), 7.01 (4 H, d, J = 8.1 Hz), 7.10 (2 H, t, J = 7.6 Hz), 7.37 (2 H, t, J = 7.6 Hz), 7.43 (2 H, d, J = 7.6 Hz), 7.73 (2 H, d, J = 7.6 Hz), 7.75 (2 H, d, J = 7.6 Hz). 13C NMR (67.8 MHz, DMSO-d 6): δ = 20.9, 125.3, 125.4, 125.8, 127.1, 127.4 (d, J P-C = 1.0 Hz), 127.8, 128.1 (t, J P-C = 1.5 Hz), 130.8 (t, J P-C = 1.5 Hz), 131.1 (d, J P-C = 1.0 Hz), 131.5 (d, J P-C = 1.0 Hz), 132.1, 134.5-134.6 (m), 137.6-137.8 (m), 140.6 (d, J P-C = 4.9 Hz). IR (KBr): 3458, 3055, 2910, 1344, 1171, 1113 cm-1. HRMS (ESI): m/z calcd for C34H27N2O6PS2 [M - H]-: 653.0975. Found 653.0975.
21Compound 4e: white solid; R f = 0.20 (hexane-EtOAc, 2:1). HPLC analysis Chiralpak AD-H (hexane-EtOH, 80:20, 1.0 mL/min, 254 nm, 10 °C) 19.1 (S), 27.3 (R) min. 1H NMR (270 MHz, CDCl3): δ = 2.12 (3 H, s), 2.32 (3 H, s), 4.41 (1 H, d, J = 4.9 Hz), 6.06 (1 H, dd, J = 9.2, 4.9 Hz), 7.22-7.54 (8 H, m), 7.77-7.86 (2 H, m), 7.97 (1 H, br d, J = 9.2 Hz). 13C NMR (67.8 MHz, CDCl3): δ = 29.8, 31.6, 52.3, 70.0, 126.3, 127.1, 127.8, 128.6, 128.8, 131.8, 133.7, 139.2, 166.8, 202.6, 205.9. IR (KBr): 3369, 3032, 2918, 1724, 1639, 1522 cm-1. HRMS (ESI): m/z calcd for C19H19NaNO3 [M + Na]+: 332.1257. Found: 332.1260.
22The absolute configuration of Bz-product 4e was determined after transformation into the stereochemically known N-benzoylphenylglycine methyl ester. The stereochemical determination of 4a and the experimental procedure for derivatization of 4 to N-protected glycine methyl ester were described in ref. 8a.