References and Notes
1 Present address: Sagami Chemical Research Center, Ayase 252-1193, Japan.
Reviews on atom economy:
2a
Trost BM.
Science
1991,
254:
1471
2b
Trost BM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
259
2c
Trost BM.
Acc. Chem. Res.
2002,
35:
695
Recent reviews on organocatalysis:
3a
Dalko PL.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
3b Special issue on ‘Organic Catalysis’: Adv. Synth. Catal. 2004, 346.
3c Special issue on ‘Enantioselective Organocatalysis’: Acc. Chem. Res. 2004, 37.
3d
Berkessel A.
Gröger H.
Asymmetric Organocatalysis - From Biomimetic Concepts to Powerful Methods for Asymmetric Synthesis
Wiley-VCH;
Weinheim:
2005.
3e
Seayad J.
List B.
Org. Biomol. Chem.
2005,
3:
719
3f
Hayashi Y.
J. Synth. Org. Chem. Jpn.
2005,
63:
464
For reviews on Brønsted acid catalysis, see:
4a
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
4b
Pihko PM.
Angew. Chem. Int. Ed.
2004,
43:
2062
For selected recent examples of asymmetric Brønsted acid catalysis, see:
5a
Huang Y.
Unni AK.
Thadani AN.
Rawal VH.
Nature (London)
2003,
424:
146
5b
Joly GD.
Jacobsen EN.
J. Am. Chem. Soc.
2004,
126:
4102
5c
Thadani AN.
Stankovic AR.
Rawal VH.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5846
5d
Du H.
Zhao D.
Ding K.
Chem.-Eur. J.
2004,
10:
5964
5e
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2005,
127:
1080
5f
Unni AK.
Takenaka N.
Yamamoto H.
Rawal VH.
J. Am. Chem. Soc.
2005,
127:
1336
5g
Fuerst DE.
Jacobsen EN.
J. Am. Chem. Soc.
2005,
127:
8964
5h
Rueping M.
Sugiono E.
Azap C.
Theissmann T.
Bolte M.
Org. Lett.
2005,
7:
3781
5i
Zhuang W.
Hazell RG.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
2566
5j
Zhuang W.
Poulsen TB.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
3284
5k
Tonoi T.
Mikami K.
Tetrahedron Lett.
2005,
46:
6355
5l
Herrera RP.
Sgarzani V.
Bernardi L.
Ricci A.
Angew. Chem. Int. Ed.
2005,
44:
6576
6a
Lewis Acid Reagents: A Practical Approach
Yamamoto H.
Oxford University Press;
Oxford:
1999.
6b
Lewis Acids in Organic Synthesis
Yamamoto H.
Wiley-VCH;
Weinheim:
2000.
7a
Akiyama T.
Itoh J.
Yokota K.
Fuchibe K.
Angew. Chem. Int. Ed.
2004,
43:
1566
7b
Akiyama T.
Morita H.
Itoh J.
Fuchibe K.
Org. Lett.
2005,
7:
2583
8a
Uraguchi D.
Terada M.
J. Am. Chem. Soc.
2004,
126:
5356
8b
Uraguchi D.
Sorimachi K.
Terada M.
J. Am. Chem. Soc.
2004,
126:
11804
8c
Uraguchi D.
Sorimachi K.
Terada M.
J. Am. Chem. Soc.
2005,
127:
9630
For stereoselective direct Mannich reaction catalyzed by achiral Brønsted acid, see:
9a
Wu Y.-S.
Cai J.
Hu Z.-Y.
Lin G.-X.
Tetrahedron Lett.
2004,
45:
8949
9b
Akiyama T.
Matsuda K.
Fuchibe K.
Synlett
2005,
322
10a Review: Lucet D.
Le Gall T.
Mioskowski C.
Angew. Chem. Int. Ed.
1998,
37:
2581 ; and references therein
10b
Corey EJ.
Imwinkelried R.
Pikul S.
Xiang YB.
J. Am. Chem. Soc.
1989,
111:
5493
10c
Corey EJ.
Yu C.-M.
Kim SS.
J. Am. Chem. Soc.
1989,
111:
5495
11
Preparation of Phosphorodiamidic Acid (
1a).
N,N′-Ditosylbenzene-1,2-diamine (208.3 mg, 0.5 mmol), prepared according to the literature procedure,
[23]
was dissolved into pyridine (1 mL) under nitrogen atmosphere. To the resulting solution was added phosphorus oxychloride (115.0 mg, 0.75 mmol) at r.t. After being stirred for 12 h at ambient temperature, H2O (1 mL) was poured into the reaction mixture. The resulting suspension was stirred for additional 30 min. Then, EtOAc was added and all pyridine was removed by reverse extraction with 1 N HCl. The organic phase was dried over Na2SO4. After being concentrated, the residue was purified by column chromatography. Compound 1a was isolated as a white solid in 90% yield. 1H NMR (270 MHz, DMSO-d
6,): δ = 2.30 (6 H, s), 6.79-6.86 (2 H, m), 7.17-7.24 (2 H, m), 7.31 (4 H, d, J = 8.4 Hz), 8.02 (4 H, d, J = 8.4 Hz). 13C NMR (67.8 MHz, DMSO-d
6): δ = 21.0, 113.1 (d, J
P-C = 5.4 Hz), 122.9, 126.8 (t, J
P-C = 10.3 Hz), 127.9, 129.5, 135.7, 144.2. IR (KBr): 3425, 3072, 1375, 1175, 1119 cm-1. HRMS (ESI): m/z calcd for C20H19N2O6PS2 [M - H]-: 477.0349. Found: 477.0351.
12a For an excellent review of organocatalytic asymmetric direct Mannich reactions, see: Córdova A.
Acc. Chem. Res.
2004,
37:
102
See also:
12b
Poulsen TB.
Alemparte C.
Saaby S.
Bella M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2005,
44:
2896
12c See ref. 3d, Chapter 5.2.
For metal complex-mediated asymmetric direct Mannich reactions, see:
13a
Juhl K.
Gathergood N.
Jørgensen KA.
Angew. Chem. Int. Ed.
2001,
40:
2995
13b
Trost BM.
Terrell LR.
J. Am. Chem. Soc.
2003,
125:
338
13c
Matsunaga S.
Kumagai N.
Harada S.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
4712
13d
Bernardi L.
Gothelf AS.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2003,
68:
2583
13e
Marigo M.
Kjærsgaard A.
Juhl K.
Gathergood N.
Jørgensen KA.
Chem.-Eur. J.
2003,
9:
2359
13f
Matsunaga S.
Yoshida T.
Morimoto H.
Kumagai N.
Shibasaki M.
J. Am. Chem. Soc.
2004,
126:
8777
13g
Hamashima Y.
Sasamoto N.
Hotta D.
Somei H.
Umebayashi N.
Sodeoka M.
Angew. Chem. Int. Ed.
2005,
44:
1525
13h
Yoshida T.
Morimoto H.
Kumagai N.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2005,
44:
3470
13i
Kjærsgaard A.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
804
13j
Kundsen KR.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
1362
14
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd ed.:
John Wiley and Sons, Inc.;
New York:
1999.
p.494-653
15
Nakamura Y.
Matsubara R.
Kobayashi S.
Org. Lett.
2003,
5:
2481
16 The distribution of keto-enol tautomers of 3 in CDCl3 was measured by 1H NMR. The percentages of the enol form are listed as follows: 3a: 72%; 3b: 61%; 3c: >98%; 3d: 6%; 3e: 6%; 3f: 21%; 3g: <2%.
17 Although in the case of unsymmetrical 1,3-dicarbonyl compounds, keto esters 3d,e and keto amide 3f, the diastereomeric mixtures were obtained, their ratios were changed during the course of experiment.
For binaphthalene bis(sulfonamide) derivatives as a chiral ligand for metal-based catalysts, see:
18a
Terada M.
Motoyama Y.
Mikami K.
Tetrahedron Lett.
1994,
35:
6693
18b
Mikami K.
Motoyama Y.
Terada M.
Inorg. Chim. Acta
1994,
222:
71
18c
Denmark SE.
Christenson BL.
O’Connor SP.
Tetrahedron Lett.
1995,
36:
2219
18d
Shi M.
Sui W.-S.
Chirality
2000,
12:
574
18e
Ooi T.
Saito A.
Maruoka K.
J. Am. Chem. Soc.
2003,
125:
3220
18f
Yus M.
Ramon DJ.
Prieto O.
Tetrahedron: Asymmetry
2003,
14:
1103
18g
Ooi T.
Ohmatsu K.
Uraguchi D.
Maruoka K.
Tetrahedron Lett.
2004,
45:
4481
18h
Akiyama K.
Mikami K.
Tetrahedron Lett.
2004,
45:
7217
For binaphthalene-derived diazaphosphepines as a chiral ligand for metal-based catalysts, see:
19a
Reetz MT.
Oka H.
Goddard R.
Synthesis
2003,
1809
19b
Denmark SE.
Fan Y.
J. Am. Chem. Soc.
2003,
125:
7825
19c
Monti C.
Gennari C.
Steele RM.
Piarulli U.
Eur. J. Org. Chem.
2004,
3557
19d
Denmark SE.
Beutner GL.
Wynn T.
Eastgate MD.
J. Am. Chem. Soc.
2005,
127:
3774
20 Compound (R)-1b: [α]D 150 (c 0.99, CHCl3). 1H NMR (270 MHz, DMSO-d
6): δ = 3.33 (6 H, s), 6.23 (4 H, d, J = 8.1 Hz), 6.74 (2 H, d, J = 7.6 Hz), 7.01 (4 H, d, J = 8.1 Hz), 7.10 (2 H, t, J = 7.6 Hz), 7.37 (2 H, t, J = 7.6 Hz), 7.43 (2 H, d, J = 7.6 Hz), 7.73 (2 H, d, J = 7.6 Hz), 7.75 (2 H, d, J = 7.6 Hz). 13C NMR (67.8 MHz, DMSO-d
6): δ = 20.9, 125.3, 125.4, 125.8, 127.1, 127.4 (d, J
P-C = 1.0 Hz), 127.8, 128.1 (t, J
P-C = 1.5 Hz), 130.8 (t, J
P-C = 1.5 Hz), 131.1 (d, J
P-C = 1.0 Hz), 131.5 (d, J
P-C = 1.0 Hz), 132.1, 134.5-134.6 (m), 137.6-137.8 (m), 140.6 (d, J
P-C = 4.9 Hz). IR (KBr): 3458, 3055, 2910, 1344, 1171, 1113 cm-1. HRMS (ESI): m/z calcd for C34H27N2O6PS2 [M - H]-: 653.0975. Found 653.0975.
21 Compound 4e: white solid; R
f
= 0.20 (hexane-EtOAc, 2:1). HPLC analysis Chiralpak AD-H (hexane-EtOH, 80:20, 1.0 mL/min, 254 nm, 10 °C) 19.1 (S), 27.3 (R) min. 1H NMR (270 MHz, CDCl3): δ = 2.12 (3 H, s), 2.32 (3 H, s), 4.41 (1 H, d, J = 4.9 Hz), 6.06 (1 H, dd, J = 9.2, 4.9 Hz), 7.22-7.54 (8 H, m), 7.77-7.86 (2 H, m), 7.97 (1 H, br d, J = 9.2 Hz). 13C NMR (67.8 MHz, CDCl3): δ = 29.8, 31.6, 52.3, 70.0, 126.3, 127.1, 127.8, 128.6, 128.8, 131.8, 133.7, 139.2, 166.8, 202.6, 205.9. IR (KBr): 3369, 3032, 2918, 1724, 1639, 1522 cm-1. HRMS (ESI): m/z calcd for C19H19NaNO3 [M + Na]+: 332.1257. Found: 332.1260.
22 The absolute configuration of Bz-product 4e was determined after transformation into the stereochemically known N-benzoylphenylglycine methyl ester. The stereochemical determination of 4a and the experimental procedure for derivatization of 4 to N-protected glycine methyl ester were described in ref. 8a.
23
Dubey PK.
Kulkarni SM.
Kumar RV.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2002,
41:
1305