Subscribe to RSS
DOI: 10.1055/s-2006-939695
A Versatile Approach to Protected (4S,5R)-4-Hydroxy-5-(α-hydroxyalkyl)-2-pyrrolidinones
Publication History
Publication Date:
05 May 2006 (online)
Abstract
Starting from (S)-N,O-dibenzylmalimide (7), a versatile four-step approach to (4S,5R)-N-benzyl-4-benzyloxy-5-(α-hydroxyalkyl)-2-pyrrolidinones 9 is reported. The method consists of Grignard reagent addition, p-toluenesulfonic acid monohydrate-mediated dehydration, one-pot epoxidation-methanol ring-opening reaction and reductive demethoxylation. 2-Pyrrolidinones 9 were obtained with excellent trans-diastereoselectivity in the pyrrolidinone ring and low diastereoselectivity at the carbinol center.
Key words
dehydration - enamide - 2-pyrrolidinones - epoxidation - asymmetric synthesis
- For two recent reviews on the carbanion chemistry, see:
-
1a
Yus M. Chem. Soc. Rev. 1996, 25: 155 -
1b
Alonso F.Yus M. Chem. Soc. Rev. 2004, 33: 284 - For reviews involving the generation and application of α-lithioamines, see:
-
1c
Cohen T.Bhupathy M. Acc. Chem. Res. 1989, 22: 152 -
1d
Gant TG.Meyers AI. Tetrahedron 1994, 50: 2297 -
1e
Beak P.Basu A.Gallagher DJ.Park YS.Thayumanavan S. Acc. Chem. Res. 1996, 29: 552 -
1f
Cohen T. Pure Appl. Chem. 1996, 68: 913 -
1g
Gawley RE. Curr. Org. Chem. 1997, 1: 71 -
1h
Kessar SV.Singh P. Chem. Rev. 1997, 97: 721 -
1i
Katritzky AR.Qi M. Tetrahedron 1998, 54: 2647 -
1j
Husson HP.Royer J. Chem. Soc. Rev. 1999, 28: 383 -
1k
Rassu G.Zanardi F.Battistini L.Casiraghi G. Chem. Soc. Rev. 2000, 29: 109 -
1l
Casiraghi G.Zanardi F.Appendino G.Rassu G. Chem. Rev. 2000, 100: 1929 - 2 For a series of papers on functionalized organolithium compounds, see: Tetrahedron Symposia-in-Print, Nájera, C.; Yus, M., Eds.; Tetrahedron 2005, 61: 3125
- For a short discussion on challenges associated with the generation and C-C bond formation of chiral non-racemic N-α-carbanion of protected 4-hydroxy-2-pyrrolidinone A, see:
-
3a
Zheng X.Feng C.-G.Ye J.-L.Huang P.-Q. Org. Lett. 2005, 7: 553 -
3b For a synthesis of a specific 2-pirrolidinone derivative of type 9, see:
Poisson JF.Normant JF. Org. Lett. 2001, 3: 1889 -
3c For a related work, see:
Iula DM.Gawley RE. J. Org. Chem. 2000, 65: 6196 - For selected reviews, see:
-
4a
Elbein AD.Molyneux R. In Alkaloids: Chemical and Biological PerspectivesPelletier SW. Wiley and Sons; New York: 1987. Vol. 5: -
4b
Takahata H.Momose T. In The AlkaloidsCordell GA. Academic; San Diego, CA: 1993. Vol. 44: Chap. 3. -
4c
Michael JP. Nat. Prod. Rep. 1997, 14: 619 -
4d
Michael JP. Nat. Prod. Rep. 1998, 15: 571 -
4e
Michael JP. Nat. Prod. Rep. 1999, 16: 675 -
4f
Asano N.Nash RJ.Molyneux RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1645 - For comprehensive reviews on azasugars, see:
-
5a
Elbein AD.Molyneux RJ. In Iminosugars as Glycosidase InhibitorsStutz AE. Wiley-VCH; Weinheim: 1999. p.216 -
5b
Sears P.Wong C.-H. Angew. Chem. Int. Ed. 1999, 38: 2301 -
5c
Watson AA.Fleet GWJ.Asano N.Molyneux RJ.Nash RJ. Phytochemistry 2001, 56: 265 -
5d
Afarinkia K.Bahar A. Tetrahedron: Asymmetry 2005, 16: 1239 - 6
El Nemr A. Tetrahedron 2000, 56: 8579 - 7 For a recent synthesis of bulgecinine, see:
Chavan SP.Praveen C.Sharma P.Kalkote UR. Tetrahedron Lett. 2005, 46: 439 - 8
Huang P.-Q.Zheng X.Wang S.-L.Ye J.-L.Jin L.-R.Chen Z. Tetrahedron: Asymmetry 1999, 10: 3309 -
9a
Huang P.-Q.Wu T.-J.Ruan Y.-P. Org. Lett. 2003, 5: 4341 -
9b
Huang P.-Q.Deng J. Synlett 2004, 247 - For an achiral version, see:
-
10a
Gallagher T.Giles M.Subramanian RS.Hadley MS. J. Chem. Soc., Chem. Commun. 1992, 166 -
10b
Thompson SHJ.Subramanian RS.Roberts JK.Hadley MS.Gallagher T. J. Chem. Soc., Chem. Commun. 1994, 933 - 11
Tang T.Ruan Y.-P.Ye J.-L.Huang P.-Q. Synlett 2005, 231 -
12a
Huang P.-Q.Wang S.-L.Ye J.-L.Ruan Y.-P.Huang Y.-Q.Zheng H.Gao JX. Tetrahedron 1998, 54: 12547 -
12b
He B.-Y.Wu T.-J.Yu X.-Y.Huang P.-Q. Tetrahedron: Asymmetry 2003, 14: 2101 -
12c
Liu L.-X.Ruan Y.-P.Guo Z.-Q.Huang P.-Q. J. Org. Chem. 2004, 69: 6001 -
13a
Ha DC.Yun CS.Yu E. Tetrahedron Lett. 1996, 37: 2577 -
13b
Jacobi PA.Brielmann HL.Hauck SI. J. Org. Chem. 1996, 61: 5013 -
13c
Farcas S.Namy JL. Tetrahedron Lett. 2001, 42: 879 -
13d
Kim S.-H.Park Y.Choo H.Cha JK. Tetrahedron Lett. 2002, 43: 6657 -
13e
Padwa A.Rashatasakhon P.Rose M. J. Org. Chem. 2003, 68: 5139 -
13f
Mulder JA.Kurtz KCM.Hsung RP.Coverdale H.Frederick MO.Shen L.Zificsak CA. Org. Lett. 2003, 5: 1547 -
13g For an approach to exo-glycals, see:
Yang WB.Yang YY.Gu YF.Wang SH.Chang CC.Lin CH. J. Org. Chem. 2002, 67: 3773 -
14a
Koseki Y.Kusano S.Ichi D.Yoshida K.Nagasaka T. Tetrahedron 2000, 56: 8855 -
14b
Xiong H.Hsung RP.Shen L.Hahn JM. Tetrahedron Lett. 2002, 43: 4449 -
14c
Koseki Y.Sato H.Watanabe Y.Nagasaka T. Org. Lett. 2002, 4: 885 -
14d
Davies SG.Key MS.Rodriguez-Solla H.Sanganee HJ.Savory ED.Smith AD. Synlett 2003, 1659 -
16a
Deslongchamps P. Stereoelectronic Effects in Organic Chemistry Pergamon; New York: 1983. - See also:
-
16b
Kirby AJ. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen Springer; New York: 1983. -
16c
Thatcher GRJ. The Anomeric Effect and Associated Stereoelectronic Effects ACS Symposium Series 593, American Chemical Society; Washington DC: 1993. -
16d
Juaristi E.Cuevas G. The Anomeric Effect CRC; Boca Raton, FL: 1995. -
17a For a related stereoelectronic effect observed in another class of N,O-acetals, see:
Chen M.-D.He M.-Z.Zhou X.Huang L.-Q.Ruan Y.-P.Huang P.-Q. Tetrahedron 2005, 61: 1335 -
17b For an example of stereoelectronic control of oxazolidine ring-opening, see:
Sélambarom J.Monge S.Carré F.Roque JP.Pavia AA. Tetrahedron 2002, 58: 9559 - For reviews on the Et3SiH-mediated ionic hydrogenation, see:
-
18a
Kursanov DN.Parnes ZN.Loim NM. Synthesis 1974, 633 -
18b
Nagai Y. Org. Prep. Proced. Int. 1980, 12: 13 - For recent reviews on the chemistry of N-acyliminiums, see:
-
19a
Speckamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817 -
19b
Maryanoff BE.Zhang H.-C.Cohen JH.Turchi IJ.Maryanoff CA. Chem. Rev. 2004, 104: 1431 -
19c
Royer J. Chem. Rev. 2004, 104: 2311 - 20
Bernardi A.Micheli F.Potenza D.Scolastico C.Villa R. Tetrahedron Lett. 1990, 31: 4949
References and Notes
All new compounds (6 and 9) gave satisfactory analytical and spectral data.
General Procedure for the Synthesis of 9.
To a solution of the more polar diastereomer of 5
[12]
(1.0 mmol) in CH2Cl2 (10 mL) was added 0.05 mmol of p-TSA. The mixture was stirred at r.t. for 1 h. Then the reaction was quenched with sat. aq NaHCO3 and extracted with CH2Cl2 (3 × 10 mL). The combined extracts were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel eluting with EtOAc-PE to give 6. To a solution of 6 (1.0 mmol) in a mixture of abs. MeOH (20 mL) and dry CH2Cl2 (10 mL) was added dropwise a solution of MCPBA (3.0 mmol) in CH2Cl2 (10 mL) at -78 °C under nitrogen atmosphere. After the mixture stirred for 1 h, it was allowed to reach r.t. and stirred overnight. Then, the reaction was quenched with a solution of aq Na2S2O3 (10%) and sat. NaHCO3. The mixture was extracted with CH2Cl2 (3 × 40 mL). The combined extracts were washed with brine, dried over anhyd Na2SO4, filtered and concentrated in vacuum. Filtration through a short pad of SiO2 eluting with EtOAc-PE gave 8 as a mixture of diastereomers. The diastereomeric ratios were determined either by flash chromatographic separation or by analysis of 1H NMR spectra of the crude mixture. To a cooled (-78 °C) solution of diastereomeric mixture of 8 (1.0 mmol) in dry CH2Cl2 (10 mL) were added dropwise triethylsilane (10 mmol) and BF3·OEt2 (10.0 mmol) under nitrogen atmosphere. After stirred for 6 h at the same temperature, the reaction was allowed to warm up and stirred at r.t. overnight. The reaction was quenched with sat. aq NaHCO3 and extracted with CH2Cl2 (3 × 20 mL). The combined extracts were washed with brine, dried over anhyd Na2SO4, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel eluting with EtOAc-PE to give 9.
Selected physical and spectral data for 6d: [α]D
20 +62.0 (c 0.4, CHCl3). IR (film): 3060, 3023, 1719, 1674 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.80 (t, J = 7.3 Hz, 3 H, CH3), 1.22-1.38 (m, 2 H, MeCH2), 1.94-2.12 (m, 2 H, EtCH2), 2.68 (dd, J = 1.7, 17.8 Hz, 1 H, COCH2), 2.78 (dd, J = 7.0, 17.8 Hz, 1 H, COCH2), 4.42 (d, J = 11.2 Hz, 1 H, PhCH2O), 4.53 (d, J = 11.2 Hz, 1 H, PhCH2O), 4.70 (s, 2 H, PhCH2N), 4.74 (dd, J = 1.7, 7.0 Hz, 1 H, BnOCH), 4.84 (t, J = 7.5 Hz, 1 H, =CH), 7.20-7.40 (m, 10 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.6, 23.3, 28.7, 36.6, 43.4, 69.9, 70.2, 108.0, 127.0, 127.2, 128.0, 128.1, 128.3, 128.4, 128.5, 135.8, 137.3, 138.9, 173.1 ppm. MS (ESI): m/z (%) = 336 (100) [M + H+]. Anal. Calcd for C22H25NO2: C, 78.77; H, 7.51; N, 4.18. Found: C, 78.81; H, 7.47; N, 4.00.
Selected physical and spectral data for 9d: major diastereomer: colorless oil; [α]D
20 +44.2 (c 1.0, CHCl3). IR (film): 3378, 3063, 3031, 1671 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.84 (t, J = 7.1 Hz, 3 H, CH3), 1.22-1.48 [m, 4 H, Me(CH2)2], 2.50 (dd, J = 1.3, 17.4 Hz, 1 H, COCH2), 2.80 (dd, J = 6.9, 17.4 Hz, 1 H, COCH2), 3.00 (br s, 1 H, OH), 3.40 (d, J = 4.9 Hz, 1 H, BnNCH), 3.78-3.84 (m, 1 H, CHOH), 4.18 (d, J = 15.0 Hz, 1 H, PhCH2N), 4.19 (dd, J = 1.3, 6.9 Hz, 1 H, BnOCH), 4.40 (d, J = 11.7 Hz, 1 H, PhCH2O), 4.48 (d, J = 11.7 Hz, 1 H, PhCH2O), 5.00 (d, J = 15.0 Hz, 1 H, PhCH2N), 7.20-7.40 (m, 10 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.9, 19.3, 34.8, 38.6, 44.2, 68.0, 68.8, 70.4, 71.9, 127.7, 127.8, 128.4, 128.8, 136.2, 137.5, 174.2 ppm. MS (ESI): m/z (%) = 376 (100) [M + Na+]; minor diastereomer: white crystals, mp 77-79 °C; [α]D
20 +13.9 (c 0.4, CHCl3). IR (KBr, pellet): 3394, 3062, 3031, 1669 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.88 (t, J = 7.3 Hz, 3 H, CH3), 1.10-1.32 [m, 3 H, Me(CH2)2], 1.42-1.52 [m, 1 H, Me(CH2)2], 2.33 (br s, 1 H, OH), 2.51 (d, J = 17.7 Hz, 1 H, COCH2), 2.75 (dd, J = 6.4, 17.7 Hz, 1 H, COCH2), 3.58 (d, J = 4.6 Hz, 1 H, BnNCH), 3.61-3.65 (m, 1 H, CHOH), 4.02 (d, J = 6.4 Hz, 1 H, BnOCH), 4.18 (d, J = 15.2 Hz, 1 H, PhCH2N), 4.42 (s, 2 H, PhCH2O), 5.02 (d, J = 15.2 Hz, 1 H, PhCH2N), 7.20-7.40 (m, 10 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.8, 19.2, 34.8, 38.2, 45.9, 67.8, 70.2, 71.3, 73.8, 127.5, 127.6, 127.7, 127.9, 128.4, 128.6, 136.3, 137.6, 174.3 ppm. MS (ESI): m/z (%) = 354 (67) [M + H+], 376 (100) [M + Na+]. Anal. Calcd for C22H27NO3: C, 74.76; H, 7.70; N, 3.96. Found: C, 74.77; H, 7.94; N, 4.02.