Synlett 2021; 32(16): 1621-1624 DOI: 10.1055/a-1282-9731
cluster
Modern Nickel-Catalyzed Reactions
Nickel-Catalyzed α-1,3-Dienylation of 1,3-Dicarbonyl Compounds with Propargylic Carbonates
,
Yuka Kamino
,
› Author Affiliations This work was supported by the Japan Society for the Promotion of Science [JSPS KAKENHI, Grant Numbers 15H05756 (M.M.), 18H04648 (Hybrid Catalysis, N.I.), and 20H04810 (Hybrid Catalysis, N.I.)].
Abstract
Herein reported is a nickel-catalyzed α-1,3-dienylation reaction of 1,3-dicarbonyl compounds with substituted propargylic (e.g., but-2-ynyl) carbonates. The propargyl unit changes into a 1,3-dienyl unit, which is incorporated at the α-position of the 1,3-dicarbonyl compounds.
Key words
nickel -
1,3-diene -
malonate -
propargylic carbonate -
C–C bond formation
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1282-9731.
Supporting Information
Publication History
Received: 15 September 2020
Accepted after revision: 05 October 2020
Accepted Manuscript online: 05 October 2020
Article published online: 02 November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a The Chemistry of Dienes and Polyenes, Vol. 1.
Rappoport Z.
Wiley; Chichester: 1997
1b The Chemistry of Dienes and Polyenes, Vol. 2.
Rappoport Z.
Wiley; Chichester: 2000
1c
Corey EJ.
Angew. Chem. Int. Ed. 2002; 41: 1650
1d
Nicolaou KC,
Snyder SA,
Montagnon T,
Vassilikogiannakis G.
Angew. Chem. Int. Ed. 2002; 41: 1668
1e
Xiong Y,
Sun Y,
Zhang G.
Tetrahedron Lett. 2018; 59: 347
1f
Holmes M,
Schwartz LA,
Krische MJ.
Chem. Rev. 2018; 118: 6026
2
Locascio TM,
Tunge JA.
Chem. Eur. J. 2016; 22: 18140
3
Ishida N,
Hori Y,
Okumura S,
Murakami M.
J. Am. Chem. Soc. 2019; 141: 84
4
O’Broin CQ,
Guiry PJ.
Org. Lett. 2020; 22: 879
For palladium-catalyzed intramolecular reactions, see:
5a
Fournier-Nguefack C,
Lhoste P,
Sinou D.
Synlett 1996; 553
5b
Kozawa Y,
Mori M.
J. Org. Chem. 2003; 68: 8068
5c
Ambrogio I,
Cacchi S,
Fabrizi G,
Prastaro A.
Tetrahedron 2009; 65: 8916
5d
Nemoto T,
Zhao Z,
Yokosaka T,
Suzuki Y,
Wu R,
Hamada Y.
Angew. Chem. Int. Ed. 2013; 52: 2217
5e
Daniels DS. B,
Jones AS,
Thompson AL,
Paton R,
Anderson A.
Angew. Chem. Int. Ed. 2014; 53: 1915
5f
Ogiwara Y,
Sato K,
Sakai N.
Org. Lett. 2017; 19: 5296
Reviews on transition-metal-catalyzed reactions of propargylic electrophiles:
6a
Tsuji J,
Mandai T.
Angew. Chem. Int. Ed. 1996; 34: 2589
6b
Ma S.
Eur. J. Org. Chem. 2004; 1175
6c
Guo L.-N,
Duan X.-H,
Liang Y.-M.
Acc. Chem. Res. 2011; 44: 111
6d
Yoshida M.
Heterocycles 2013; 87: 1835
6e
Franckevičius V.
Tetrahedron Lett. 2016; 57: 3586
6f
Roy R,
Saha S.
RSC Adv. 2018; 8: 31129
6g
O’Broin CQ,
Guiry P.
J. Org. Chem. 2020; 85: 10321
Selected examples:
7a
Behenna DC,
Mohr JT,
Sherden NH,
Marinescu SC,
Harned AM,
Tani K,
Seto M,
Ma S,
Novák Z,
Krout MR,
McFadden RM,
Roizen JL,
Enquist JA,
White DE,
Levine SR,
Petrova KV,
Iwashita A,
Virgil SC,
Stoltz BM.
Chem. Eur. J. 2011; 17: 14199
7b
Ambrogio I,
Cacchi S,
Fabrizi G,
Goggiamani A,
Lazzetti A.
Eur. J. Org. Chem. 2015; 3147
7c
Oelke AJ,
Sun J,
Fu GC.
J. Am. Chem. Soc. 2012; 134: 2966
7d
Watanabe K,
Miyazaki Y,
Okubo M,
Zhou B,
Tsuji H,
Kawatsura M.
Org. Lett. 2018; 20: 5448
7e
Tang S,
Wei W,
Yin D,
Poznik M,
Chruma JJ.
Eur. J. Org. Chem. 2019; 3964
7f
O’Broin CQ,
Guiry PJ.
Org. Lett. 2019; 21: 5402
Selected examples:
8a
Jeffery-Luong T,
Linstrumelle G.
Tetrahedron Lett. 1980; 21: 5019
8b
Ruitenberg K,
Kleijn H,
Elsevier CJ,
Meijer J,
Vermeer P.
Tetrahedron Lett. 1981; 22: 1451
8c
Keinan E,
Bosch E.
J. Org. Chem. 1986; 51: 4006
8d
Moriya T,
Miyaura N,
Suzuki A.
Synlett 1994; 149
8e
Kimura M,
Wakamiya Y,
Horino Y,
Tamaru Y.
Tetrahedron Lett. 1997; 38: 3963
8f
Kalek M,
Jahansson T,
Jezowska M,
Stawinski J.
Org. Lett. 2010; 12: 4702
8g
Molander GA,
Sommers EM,
Baker SR.
J. Org. Chem. 2006; 71: 1563
8h
Yoshida M,
Ohno S,
Namba K.
Angew. Chem. Int. Ed. 2013; 52: 13597
8i
Smith MK,
Tunge JA.
Org. Lett. 2017; 19: 5497
8j
Wang H,
Luo H,
Zhang Z,
Zheng W.-F,
Yin Y,
Qian H,
Zhang J,
Ma S.
J. Am. Chem. Soc. 2020; 142: 9763
Selected examples:
9a
Tsuji J,
Watanabe H,
Minami I,
Shimizu I.
J. Am. Chem. Soc. 1985; 107: 2196
9b
Yoshida M,
Fujita M,
Ishii T,
Ihara M.
J. Am. Chem. Soc. 2003; 125: 4874
9c
Labrosse J.-R,
Lhoste P,
Delbecq F,
Sinou D.
Eur. J. Org. Chem. 2003; 2813
9d
Ambrogio I,
Cacchi S,
Fabrizi G.
Org. Lett. 2006; 8: 2083
9e
Guo L.-N,
Duan X.-H,
Bi H.-P,
Liu X.-Y,
Liang Y.-M.
J. Org. Chem. 2007; 72: 1538
9f
Inuki S,
Yoshimitsu Y,
Oishi S,
Fujii N,
Ohno H.
J. Org. Chem. 2010; 75: 3831
9g
Nishioka N,
Koizumi T.
J. Polym. Sci., Part A: Polym. Chem. 2011; 49: 642
9h
Schröder SP,
Taylor NJ,
Jackson P,
Franckevičius V.
Org. Lett. 2013; 15: 3778
9i
Nibbs AE,
Montgomery TD,
Zhu Y,
Rawal VH.
J. Org. Chem. 2015; 80: 4928
9j
Wu T,
Chen M,
Yang Y.
J. Org. Chem. 2017; 82: 11304
9k
Kawase A,
Omura H,
Doi T,
Tsukamoto H.
Chem. Lett. 2019; 48: 1402
9l
Ding L,
Gao RD,
You S.-L.
Chem. Eur. J. 2019; 25: 4330
Selected examples of π-propargyl complexes:
10a
Gotzig J,
Otto H,
Werner H.
J. Organomet. Chem. 1985; 287: 247
10b
Jia G,
Rheingold AL,
Meek DW.
Organometallics 1989; 8: 1378
10c
Wakatsuki Y,
Yamazaki H,
Maruyama Y,
Shimizu I.
J. Chem. Soc., Chem. Commun. 1991; 261
10d
Krivykh VV,
Taits ES,
Petrovskii PV,
Struchkov YT,
Yanovskii AI.
Mendeleev Commun. 1991; 1: 103
10e
Huang T.-M,
Chen J.-T,
Lee G.-H,
Wang YA.
J. Am. Chem. Soc. 1993; 115: 1170
10f
Blosser PW,
Gallucci JC,
Wojcicki A.
J. Am. Chem. Soc. 1993; 115: 2994
10g
Stang PJ,
Crittell CM,
Arif AM.
Organometallics 1993; 12: 4799
10h
Casey CP,
Nash JR,
Yi CS,
Selmeczy AD,
Chung S,
Powell DR,
Hayashi RK.
J. Am. Chem. Soc. 1998; 120: 722
10i
Cheng Y.-C,
Chen Y.-K,
Huang T.-M,
Yu C.-I,
Lee G.-H,
Wang Y,
Chen J.-T.
Organometallics 1998; 17: 2953
10j
Norambuena VF. Q,
Heeres A,
Heeres HJ,
Meetsma A,
Teuben JH,
Hessen B.
Organometallics 2008; 27: 5672
10k
Nagae H,
Kundu A,
Tsurugi H,
Mashima K.
Organometallics 2017; 36: 3061
For the central attack by nucleophile, see:
11a
Chen J.-T.
Coord. Chem. Rev. 1999; 190-192: 1143
11b
Su C.-C,
Chen J.-T,
Lee G.-H,
Wang Y.
J. Am. Chem. Soc. 1994; 116: 4999
11c
Tsai F.-Y,
Hsu R.-H,
Huang T.-M,
Chen J.-T,
Lee G.-H,
Wang Y.
J. Organomet. Chem. 1996; 520: 85
12 For the formation of π-allylmetals from π-propargylmetals, see ref. 10h,i and 11.
13 For a relevant deprotonation reaction of a π-allylpalladium species, see:
Takacs JM,
Lawson EC,
Clement F.
J. Am. Chem. Soc. 1997; 119: 5956
14
α-Dienylation of Malonate 1 with 2: Typical Procedure
Ni(cod)2 (5.5 mg, 0.020 mmol, 5 mol%) and ligand 5 (15.6 mg, 0.030 mmol, 8 mol%) were placed in a vial. Acetonitrile (2 mL) was added, and the mixture was stirred at room temperature for 5 min. Then, malonate 1 (69.7 mg, 0.40 mmol) and propargyl carbonate 2 (88.5 mg, 0.52 mmol, 1.3 equiv) were added to the mixture, which was stirred at 80 °C for 24 h. After cooled to room temperature, the reaction mixture was passed through a pad of silica gel, which was eluted with ethyl acetate. The filtrate was evaporated to dryness under reduced pressure. The residue was purified by preparative thin-layer chromatography (PTLC; eluent: hexane/ethyl acetate = 10:1) to give a colorless oil (80.4 mg), which was estimated by 1 H NMR spectroscopy to contain 3 (0.33 mmol, 81%) and 4 (0.029 mmol, 7%).
1 H NMR (400 MHz, CDCl3 ): δ = 1.26 (t, J = 7.0 Hz, 6 H), 1.63 (s, 3 H), 4.22 (q, J = 7.2 Hz, 4 H), 5.02 (s, 1 H), 5.09 (d, J = 10.8 Hz, 1 H), 5.38 (d, J = 17.2 Hz, 1 H), 5.42 (s, 1 H), 6.31 (dd, J = 17.2, 11.2 Hz, 1 H). 13 C NMR (101 MHz, CDCl3 ): δ = 14.1, 21.2, 58.9, 61.7, 114.1, 115.8, 136.2, 145.2, 171.1. HRMS (APCI+ ): m/z calcd for C12 H19 O4 [M + H]+ : 227.1283; found: 227.1279. IR (ATR): 2983, 1728, 1248, 1219, 1101, 1018 cm–1 .