Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(17): 3045-3050
DOI: 10.1055/a-1484-6216
DOI: 10.1055/a-1484-6216
special topic
Bond Activation – in Honor of Prof. Shinji Murai
Nickel-Catalyzed Decarbonylative Thioetherification of Acyl Fluorides via C–F Bond Activation
Abstract
Nickel-catalyzed decarbonylative thioetherification of acyl fluorides has been developed. This transformation allows an array of acyl fluorides to react with thiophenols. A wide range of functional groups are well tolerated and the corresponding sulfides can be obtained in good to excellent yields. This protocol provides the formation of diverse carbon–sulfur bonds via a highly efficient decarbonylative process.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1484-6216.
- Supporting Information
Publication History
Received: 13 March 2021
Accepted after revision: 16 April 2021
Accepted Manuscript online:
16 April 2021
Article published online:
17 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Nakazawa T, Xu J, Nishikawa T, Oda T, Fujita A, Ukai K, Mangindaan RE. P, Rotinsulu H, Kobayashi H, Namikoshi M. J. Nat. Prod. 2007; 70: 439
- 1b Dunbar KL, Scharf DH, Litomska A, Hertweck C. Chem. Rev. 2017; 117: 5521
- 1c Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
- 2a Hilbert GE, Johnson TB. J. Am. Chem. Soc. 1929; 51: 1526
- 2b Petrillo G, Novi M, Garbarino G, Dell’Erba C. Tetrahedron Lett. 1985; 26: 6365
- 3 Bhowmik A, Yadav M, Fernandes RA. Org. Biomol. Chem. 2020; 18: 2447
- 4a Itoh T, Mase T. Org. Lett. 2004; 6: 4587
- 4b Fernandez-Rodriguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
- 4c Fernandez-Rodriguez MA, Shen Q, Hartwig JF. Chem. Eur. J. 2006; 12: 7782
- 4d Lee J.-Y, Lee PH. J. Org. Chem. 2008; 73: 7413
- 4e Alvaro E, Hartwig JF. J. Am. Chem. Soc. 2009; 131: 7858
- 4f Fernandez-Rodriguez MA, Hartwig JF. J. Org. Chem. 2009; 74: 1663
- 4g Saravanan P, Anbarasan P. Org. Lett. 2014; 16: 848
- 4h Mao J, Jia T, Frensch G, Walsh PJ. Org. Lett. 2014; 16: 5304
- 4i Xu J, Liu YR. Y, Yeung CS, Buchwald SL. ACS Catal. 2019; 9: 6461
- 5a Gooßen LJ, Rodriguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 5b Rodriguez N, Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 6a Guo L, Rueping M. Chem. Eur. J. 2018; 24: 7794
- 6b Blanchard N, Bizet V. Angew. Chem. Int. Ed. 2019; 58: 6814
- 6c Zhao Q, Szostak M. ChemSusChem 2019; 12: 2983
- 6d Ogiwara Y, Sakai N. Angew. Chem. Int. Ed. 2020; 59: 574
- 6e Wang Z, Wang X, Nishihara Y. Chem Asian J. 2020; 15: 1234
- 6f Lu H, Yu T, Xu P, Wei H. Chem. Rev. 2021; 121: 365
- 7a Correa A, Cornella J, Martin R. Angew. Chem. Int. Ed. 2013; 52: 1878
- 7b Meng L, Kamada Y, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2013; 52: 10048
- 7c Hong X, Liang Y, Houk KN. J. Am. Chem. Soc. 2014; 136: 2017
- 7d Lu Q, Yu H, Fu Y. J. Am. Chem. Soc. 2014; 136: 8252
- 7e Pu X, Hu J, Zhao Y, Shi Z. ACS Catal. 2016; 6: 6692
- 7f Yue H, Guo L, Liao H.-H, Cai Y, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 4282
- 7g Lee S-C, Liao H-H, Chatupheeraphat A, Rueping M. Chem. Eur. J. 2018; 24: 3608
- 8a Shi S, Meng G, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959
- 8b Hu J, Zhao Y, Liu J, Zhang Y, Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
- 8c Dey A, Sasmal S, Seth K, Lahiri GK, Maiti D. ACS Catal. 2017; 7: 433
- 9 Keaveney ST, Schoenebeck F. Angew. Chem. Int. Ed. 2018; 57: 4073
- 10 Malapit CA, Bour JR, Brigham CE, Sanford MS. Nature 2018; 563: 100
- 11 Sakurai S, Yoshida T, Tobisu M. Chem. Lett. 2019; 48: 94
- 12a Okuda Y, Xu J, Ishida T, Wang C.-A, Nishihara Y. ACS Omega 2018; 3: 13129
- 12b Fu L, Chen Q, Wang Z, Nishihara Y. Org. Lett. 2020; 22: 2350
- 13a Chen Q, Fu L, Nishihara Y. Chem. Commun. 2020; 56: 7977
- 13b Chen Q, Fu L, You J, Nishihara Y. Synlett 2020; 31: in press
- 14 Ogiwara Y, Sakurai Y, Hattori H, Sakai N. Org. Lett. 2018; 20: 4204
- 15a Wang Z, Wang X, Nishihara Y. Chem. Commun. 2018; 54: 13969
- 15b Malapit CA, Bour JR, Laursen SR, Sanford MS. J. Am. Chem. Soc. 2019; 141: 17322
- 16 Wang X, Wang Z, Nishihara Y. Chem. Commun. 2019; 55: 10507
- 17a Wang X, Wang Z, Liu L, Asanuma Y, Nishihara Y. Molecules 2019; 24: 1671
- 17b Kayumov M, Zhao J.-N, Mirzaakhmedov S, Wang D.-Y, Zhang A. Adv. Synth. Catal. 2019; 362: 776
- 18 Chen T, Tan Q, Liu X, Liu L, Huang T, Han L.-B. Synthesis 2021; 53: 95
- 19 Munoz SB, Dang H, Ispizua-Rodriguez X, Mathew T, Prakash GK. S. Org. Lett. 2019; 21: 1659
- 20 Xu H, Liang Y, Zhou X, Feng Y.-S. Org. Biomol. Chem. 2012; 10: 2562
- 21 Li J, Bao W, Zhang Y, Rao Y. Eur. J. Org. Chem. 2019; 7175
- 22 Liu D, Ma H, Fang P, Mei T. Angew. Chem. Int. Ed. 2019; 58: 5033
- 23 Liu B, Lim C, Miyake GM. J. Am. Chem. Soc. 2017; 139: 13616
- 24 Delcaillau T, Bismuto A, Lian Z, Morandi B. Angew. Chem. Int. Ed. 2020; 59: 2110
For selected reviews on carboxylic acids, see:
For selected reviews on carboxylic acids derivatives, see: