RSS-Feed abonnieren
DOI: 10.1055/a-1493-9489
Enantioselective Functionalization of Prochiral Cyclobutanones and Cyclobutenones
This work was supported by the National Natural Science Foundation of China (Grant Numbers 21772024 and 21921003).
Abstract
Enantioselective synthesis of cyclobutane derivatives is still a challenging topic in asymmetric synthesis. [2+2] Cycloaddition and skeleton rearrangement are two primary strategies to this end. Recently, functionalization of cyclobutanones and cyclobutenones, which are readily available via [2+2] cycloadditions as prochiral substrates, has emerged as a powerful tool to access versatile four-membered ring compounds. Herein, we summarize some recent advances in these areas from our and other groups.
1 Introduction
2 Enantioselective Functionalization of Cyclobutanones
2.1 Chiral Lithium Amide Approach
2.2 Enamine Approach
3 Enantioselective Functionalization of Cyclobutenones
4 Conclusion
Key words
cyclobutanone - cyclobutenone - desymmetrization - conjugate addition - chiral lithium amide - enantioselective reductionPublikationsverlauf
Eingereicht: 01. April 2021
Angenommen nach Revision: 28. April 2021
Accepted Manuscript online:
28. April 2021
Artikel online veröffentlicht:
25. Mai 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Fan Y, Gao X, Yue J. Sci. China Chem. 2016; 59: 1126
- 1b Dembitsky VM. Phytomedicine 2014; 21: 1559
- 2a Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
- 2b Xu Y, Conner ML, Brown KM. Angew. Chem. Int. Ed. 2015; 54: 11918
- 2c Wang M, Lu P. Org. Chem. Front. 2018; 5: 254
- 2d Poplata S, Tröster A, Zou Y, Bach T. Chem. Rev. 2016; 116: 9748
- 3 Secci F, Frongia A, Piras PP. Molecules 2013; 18: 15541
- 4a Namyslo JC, Kaufmann DE. Chem. Rev. 2003; 103: 1485
- 4b Sietmann J, Wiest JM. Angew. Chem. Int. Ed. 2020; 59: 6964
- 5 3-Oxocyclobutanecarboxylic acid [CAS Reg. No. 23761-23-1] : ¥ 3,532/500 g, bidepharm.
- 6a Wiberg KB. Angew. Chem., Int. Ed. Engl. 1986; 25: 312
- 6b Khoury PR, Goddard JD, Tam W. Tetrahedron 2004; 60: 8103
- 7a Danheiser RL, Gee SK. J. Org. Chem. 1984; 49: 1672
- 7b Danheiser RL, Brisbois RG, Kowalczyk JJ, Miller RF. J. Am. Chem. Soc. 1990; 112: 3093
- 9a Simpkins NS, Weller MD. Org. React. 2013; 79: 317
- 9b Harrison-Marchand A, Maddaluno J. In Lithium Compounds in Organic Synthesis: From Fundamentals to Applications . Luisi R, Capriati V. Wiley-VCH; Weinheim: 2014: 297
- 10a Honda T, Kimura N, Tsubuki M. Tetrahedron: Asymmetry 1993; 4: 1475
- 10b Honda T, Kimura N, Sato S, Kato D, Tominaga H. J. Chem. Soc., Perkin Trans. 1 1994; 1043
- 10c Honda T, Kimura NJ. Chem. Soc., Chem. Commun. 1994; 77
- 11 Aggarwal VK, Humphries PS, Fenwick A. Angew. Chem. Int. Ed. 1999; 38: 1985
- 12 Zhong C, Wang S, Lu P. Org. Chem. Front. . 2021 8. in press
- 13 Majewski M, lrvine NM, MacKinnon J. Tetrahedron: Asymmetry 1995; 6: 1837
- 14a Dolbier WR, Koroniak H, Houk KN, Sheu C. Acc. Chem. Res. 1996; 29: 471
- 14b Murakami M, Miyamoto Y, Ito Y. Angew. Chem. Int. Ed. 2001; 40: 189
- 15a Dalko PI. Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, Vol. 3. Wiley-VCH; Weinheim: 2013
- 15b Torres RR. Stereoselective Organocatalysis: Bond Formation Methodologies and Activation Modes. John Wiley & Sons; Hoboken: 2013
- 15c Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726
- 15d Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
- 15e Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
- 16a Cobb AJ. A, Shaw DM, Ley SV. Synlett 2004; 558
- 16b Kotrusz P, Toma S, Schmalz H, Adler A. Eur. J. Org. Chem. 2004; 1577
- 17 Aitken DJ, Capitta F, Frongia A, Gori D, Guillot R, Ollivier J, Piras PP, Secci F, Spiga M. Synlett 2011; 712
- 18a Aitken DJ, Bernard AM, Capitta F, Frongia A, Guillot R, Ollivier J, Piras PP, Secci F, Spiga M. Org. Biomol. Chem. 2012; 10: 5045
- 18b Capitta F, Frongia A, Ollivier J, Aitken DJ, Secci F, Piras PP, Guillot R. Synlett 2015; 26: 123
- 19a Afewerki S, Córdova A. Chem. Rev. 2016; 116: 13512
- 19b Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
- 19c Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
- 19d Chen D, Han Z, Zhou X, Gong L. Acc. Chem. Res. 2014; 47: 2365
- 19e Kim D, Park W, Jun C. Chem. Rev. 2017; 117: 8977
- 19f Allena AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
- 20 Wang M, Chen J, Chen Z, Zhong C, Lu P. Angew. Chem. Int. Ed. 2018; 57: 2707
- 21 Chang S, Holmes M, Mowat J, Meanwell M, Britton R. Angew. Chem. Int. Ed. 2017; 56: 748
- 22a Shen H, Zhang L, Chen S, Feng J, Zhang B, Zhang Y, Zhang X, Wu Y, Gong L. ACS Catal. 2019; 9. 791
- 22b Wei C, Ye X, Xing Q, Hu Y, Xie Y, Shi X. Org. Biomol. Chem. 2019; 17: 6607
- 23a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
- 23b Gurak JA. Jr, Yang KS, Liu Z, Engle KM. J. Am. Chem. Soc. 2016; 138: 5805
- 24 Xia J, Nie Y, Yang G, Liu Y, Gridnev ID, Zhang W. Chin. J. Chem. 2018; 36: 6
- 25a Xiao K, Lin DW, Miura M, Zhu R, Gong W, Wasa M, Yu J. J. Am. Chem. Soc. 2014; 136: 8138
- 25b He J, Shao Q, Wu Q, Yu J. J. Am. Chem. Soc. 2017; 139: 3344
- 25c Chen X, Chen L, Zhao H, Gao Q, Shen Z, Xu S. Chin. J. Chem. 2020; 38: 1533
- 25d Wu Q, Wang X, Shen P, Yu J. ACS Catal. 2018; 8: 2577
- 26 Misale A, Niyomchon S, Maulide N. Acc. Chem. Res. 2016; 49: 2444
- 27 Guisán-Ceino M, Parr A, Martín-Hera V, Tortos M. Angew. Chem. Int. Ed. 2016; 55: 6969
- 28 Feng S, Hao H, Liu P, Buchwald SL. ACS Catal. 2020; 10: 282
- 29 Chen Y, Hu T, Feng C, Lin G. Chem. Commun. 2015; 51: 8773
- 30 Zhong C, Huang Y, Zhang H, Zhou Q, Liu Y, Lu P. Angew. Chem. Int. Ed. 2020; 59: 2750
- 31a Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
- 31b Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
- 32a Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
- 32b Jerphagnon T, Pizzuti MG, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2009; 38: 1039
- 33 Clement HA, Boghi M, McDonald RM, Bernier L, Coe JW, Farrell W, Helal CJ, Reese MR, Sach NW, Lee JC, Hall DG. Angew. Chem. Int. Ed. 2019; 58: 18405