Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(16): 1642-1646
DOI: 10.1055/a-1517-5895
DOI: 10.1055/a-1517-5895
cluster
Modern Nickel-Catalyzed Reactions
Nickel-Catalyzed Oxidative Transamidation of Tertiary Aromatic Amines with N-Acylsaccharins
We gratefully acknowledge financial support from the National Natural Science Foundation of China (21762025, 21562026) and the Key Projects of Natural Science Foundation of Jiangxi Province (20192ACBL20026).
Abstract
The use of tertiary amines as surrogates for secondary amines has prominent advantages in terms of stabilization and ease of handling. A Ni-catalyzed transamidation of N-acylsaccharins with tertiary aromatic amines is reported. By using tert-butyl hydroperoxide as the terminal oxidant, this reaction permits selective cleavage of the C(sp3)–N bonds of unsymmetrical tertiary aromatic amines depending on the sizes of the alkyl substituents.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1517-5895.
- Supporting Information
Publication History
Received: 30 April 2021
Accepted after revision: 25 May 2021
Accepted Manuscript online:
25 May 2021
Article published online:
09 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. Greenberg A, Breneman CM, Liebman JF. Wiley-Interscience; 2000:
- 1b Sewald N, Jakubke H.-D. Peptides: Chemistry and Biology . Wiley-VCH; Weinheim: 2002
- 1c Kaspar AA, Reichert JM. Drug Discovery Today 2013; 18: 807
- 1d Winnacker M, Rieger B. Macromol. Rapid Commun. 2016; 37: 1391
-
2a
Pattabiraman VR,
Bode JW.
Nature 2011; 480: 471
- 2b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
- 2c Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
- 2d Massolo E, Pirola M, Benaglia M. Eur. J. Org. Chem. 2020; 2020: 4641
- 3 Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
- 4a Han S.-Y, Kim YA. Tetrahedron 2004; 60: 2447
- 4b El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
- 5a Gonzalez-Rosende ME, Castillo E, Lasri J, Sepulveda-Arques J. Prog. React. Kinet. Mech. 2004; 29: 311
- 5b Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 2013: 7453
- 5c de Figueiredo RM, Suppo JS, Campagne J.-M. Chem. Rev. 2016; 116: 12029
- 6a Kemnitz CR, Loewen MJ. J. Am. Chem. Soc. 2007; 129: 2521
- 6b Mujika JI, Matxain JM, Eriksson LA, Lopez X. Chem. Eur. J. 2006; 12: 7215
- 7a Kirby AJ, Komarov IV, Wothers PD, Feeder N. Angew. Chem. Int. Ed. 1998; 37: 785
- 7b Kirby AJ, Komarov IV, Feeder N. J. Am. Chem. Soc. 1998; 120: 7101
- 8 Tani K, Stoltz BM. Nature 2006; 441: 731
-
9 For a selected review, see: Liu, C.; Szostak, M. Chem. Eur. J.
2017, 23, 7157; and references cited therein.
- 10a Kaiser D, Bauer A, Lemmerer M, Maulide N. Chem. Soc. Rev. 2018; 47: 7899
- 10b Adachi S, Kumagai N, Shibasaki M. Tetrahedron Lett. 2018; 59: 1147
- 10c Chaudhari MB, Gnanaprakasam B. Chem. Asian J. 2019; 14: 76
-
10d
Li G,
Ma S,
Szostak M.
Trends Chem. 2020; 2: 914
- 10e Li G, Szostak M. Chem. Rec. 2020; 20: 649
- 11a Meng G, Szostak M. Org. Lett. 2015; 17: 4364
- 11b Meng G, Szostak M. Angew. Chem. Int. Ed. 2015; 54: 14518
-
12
Hie L,
Fine Nathel NF,
Shah TK,
Baker EL,
Hong X,
Yang Y.-F,
Liu P,
Houk KN,
Garg NK.
Nature 2015; 524: 79
- 13a Li G, Szostak M. Synthesis 2020; 52: 2579
- 13b Liu Y, Shi S, Achtenhagen M, Liu R, Szostak M. Org. Lett. 2017; 19: 1614
- 13c Meng G, Lei P, Szostak M. Org. Lett. 2017; 19: 2158
-
13d
Li G,
Szostak M.
Nat. Commun. 2018; 9: 4165
- 13e Li G, Ji C.-L, Hong X, Szostak M. J. Am. Chem. Soc. 2019; 141: 11161
- 14a Yu S, Shin T, Zhang M, Xia Y, Kim H, Lee S. Org. Lett. 2018; 20: 7563
- 14b Yang D, Shin T, Kim H, Lee S. Org. Biomol. Chem. 2020; 18: 6053
- 14c Chen J, Xia Y, Lee S. Org. Lett. 2020; 22: 3504
-
15a
Baker EL,
Yamano MM,
Zhou Y,
Anthony SM,
Garg NK.
Nat. Commun. 2016; 7: 11554
- 15b Dander JE, Baker EL, Garg NK. Chem. Sci. 2017; 8: 6433
- 16a Verho O, Lati MP, Oschmann M. J. Org. Chem. 2018; 83: 4464
- 16b Mishra A, Singh S, Srivastava V. Asian J. Org. Chem. 2018; 7: 1600
- 16c Mishra A, Chauhan S, Verma P, Singh S, Srivastava V. Asian J. Org. Chem. 2019; 8: 853
- 16d Xiong L, Deng R, Liu T, Luo Z, Wang Z, Zhu X.-F, Wang H, Zeng Z. Adv. Synth. Catal. 2019; 361: 5383
- 16e Subramani M, Rajendran SK. Eur. J. Org. Chem. 2019; 2019: 3677
- 16f Sureshbabu P, Azeez S, Chaudhary P, Kandasamy J. Org. Biomol. Chem. 2019; 17: 845
- 17a Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
- 17b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
- 17c García-Cárceles J, Bahou KA, Bower JF. ACS Catal. 2020; 10: 12738 ; and references cited therein
- 18a Shi R, Lu L, Zhang H, Chen B, Sha Y, Liu C, Lei A. Angew. Chem. Int. Ed. 2013; 52: 10582
- 18b Chen X, Chen T, Li Q, Zhou Y, Han L.-B, Yin S.-F. Chem. Eur. J. 2014; 20: 12234
- 18c Mane RS, Bhanage BM. J. Org. Chem. 2016; 81: 4974
- 18d Lai JL, Chang LM, Yuan GQ. Org. Lett. 2016; 18: 3194
- 18e Mane RS, Bhanage BM. Asian J. Org. Chem. 2018; 7: 160
- 19 Idris MA, Lee S. Org. Chem. Front. 2020; 7: 2737
- 20a Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
- 20b Boit T, Bulger AS, Dander JE, Garg NK. ACS Catal. 2020; 10: 12109
- 21a Liu C, Meng G, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2016; 18: 4194
- 21b Karthik S, Gandhi T. Org. Lett. 2017; 19: 5486
-
22
N-Methyl-N-phenylbenzamide (3a): Typical Procedure
A 20 mL standard Schlenk tube equipped with a stirrer bar was charged with N-benzoylsaccharin (1a; 51.4 mg, 0.2 mmol, 1.0 equiv) and Ni(OTf)2 (3.6 mg, 0.02 mmol, 0.10 equiv) under N2. TBHP (28.8 μL, 0.3 mmol, 1.5 equiv), N,N-dimethylaniline (2a; 30.4 μL, 0.22 mmol, 1.1 equiv), and anhyd 1,4-dioxane (3.0 mL) were added with vigorous stirring at rt. The mixture was heated at 100 °C in an oil bath for 12 h then cooled to rt. H2O was added and the resulting mixture was poured into a separatory funnel and extracted with EtOAc. The organic layer was dried (MgSO4), filtered, and concentrated under a vacuum. The crude product was purified by column chromatography [silica gel, hexane–EtOAc (20:1)] to give a yellow oily liquid; yield: 32.1 mg (76%).
1H NMR (400 MHz, CDCl3): δ = 7.30–7.28 (m, 2 H), 7.20–7.15 (m, 3 H), 7.13–7.06 (m, 3 H), 7.01 (d, J = 7.6 Hz, 2 H), 3.46 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.4, 144.7, 135.8, 129.4, 128.9, 128.5, 127.5, 126.7, 126.3, 38.2. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C14H13NNaO: 234.0895; found: 234.0898.
- 23 Meng G, Szostak M. Eur. J. Org. Chem. 2018; 2018: 2352
- 24a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 24b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 24c Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
- 25 Dai F, Yang Y, Gu J, Fang Z, Yang Z, Liu C, He W, Zhu N, Lu B, Guo K. ChemistrySelect 2019; 4: 3500
For selected reviews, see:
For selected examples on C–N bond cleavage of tertiary amines, see: