RSS-Feed abonnieren
DOI: 10.1055/a-1534-3103
Recent Advances in Dimeric Cycloparaphenylenes as Nanotube Fragments
Financial support from the National Natural Science Foundation of China (Grant No. 21971187, 21801182) and the Natural Science Foundation of Tianjin (19JCJQJC62700) is gratefully acknowledged.
Abstract
Since the discovery of cycloparaphenylenes in 2008, the chemical synthesis of more-complicated molecular systems with curved π-surfaces has been vigorously sought, giving rise to a plethora of new exciting molecules with various topologies and functions. This Synpacts article briefly summarizes recent examples of carbon nanohoop dimers, highlighting three examples as nanotube fragments. Their synthesis, isomerization, photophysical properties, and host–guest chemistry are discussed.
1 Introduction
2 Synthetic Strategy toward Nanotube Dimers
3 Isomerization Dynamics of Nanotube Dimers
4 Photophysical Properties of Nanotube Dimers
5 Host–Guest Chemistry of Nanotube Dimers
6 Conclusions
Publikationsverlauf
Eingereicht: 11. Juni 2021
Angenommen nach Revision: 23. Juni 2021
Accepted Manuscript online:
23. Juni 2021
Artikel online veröffentlicht:
16. Juli 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lewis SE. Chem. Soc. Rev. 2015; 44: 2221
- 2 Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
- 3a Yamago S, Kayahara E. Yuki Gosei Kagaku Kyokaishi 2019; 77: 1147
- 3b Majewski MA, Stępień M. Angew. Chem. Int. Ed. 2019; 58: 86
- 3c Luan Y, Cong H. Synlett 2017; 28: 1383
- 3d Segawa Y, Yagi A, Matsui K, Itami K. Angew. Chem. Int. Ed. 2016; 55: 5136
- 4a Sun Z, Matsuno T, Isobe H. Bull. Chem. Soc. Jpn. 2018; 91: 907
- 4b Rickhaus M, Mayor M, Juríček M. Chem. Soc. Rev. 2017; 46: 1643
- 5 Leonhardt EJ, Jasti R. Nat. Rev. Chem. 2019; 3: 672
- 6a Xu Y, von Delius M. Angew. Chem. Int. Ed. 2020; 59: 559
- 6b Lu D, Huang Q, Wang S, Wang J, Huang P, Du P. Front. Chem. 2019; 7: 668
- 7a Li P, Sisto TJ, Darzi ER, Jasti R. Org. Lett. 2014; 16: 182
- 7b Iwamoto T, Watanabe Y, Sakamoto Y, Suzuki T, Yamago S. J. Am. Chem. Soc. 2011; 133: 8354
- 7c Alvarez MP, Burrezo PM, Kertesz M, Iwamoto T, Yamago S, Xia J, Jasti R, Navarrete JT. L, Taravillo M, Baonza VG, Casado J. Angew. Chem. Int. Ed. 2014; 53: 7033
- 8a Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science 2017; 356: 172
- 8b Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. J. Am. Chem. Soc. 2018; 140: 10054
- 8c Cheung KY, Gui S, Deng C, Liang H, Xia Z, Liu Z, Chi L, Miao Q. Chem 2019; 5: 838
- 9a Sun Z, Ikemoto K, Fukunaga TM, Koretsune T, Arita R, Sato S, Isobe H. Science 2019; 363: 151
- 9b Ikemoto K, Yang S, Naito H, Kotani M, Sato S, Isobe H. Nat. Commun. 2020; 11: 1807
- 10a Matsui K, Segawa Y, Namikawa T, Kamada K, Itami K. Chem. Sci. 2013; 4: 84
- 10b Matsui K, Segawa Y, Itami K. J. Am. Chem. Soc. 2014; 136: 16452
- 10c Kayahara E, Iwamoto T, Takaya H, Suzuki T, Fujitsuka M, Majima T, Yasuda N, Matsuyama N, Seki S, Yamago S. Nat. Commun. 2013; 4: 2694
- 11a Ajami D, Oeckler O, Simon A, Herges R. Nature 2003; 426: 819
- 11b Anju KS, Das M, Adinarayana B, Suresh CH, Srinivasan A. Angew. Chem. Int. Ed. 2017; 56: 15667
- 11c Naulet G, Sturm L, Robert A, Dechambenoit P, Röhricht F, Herges R, Bock H, Durola F. Chem. Sci. 2018; 9: 8930
- 11d Luo Z, Yang X, Cai K, Fu X, Zhang D, Ma Y, Zhao D. Angew. Chem. Int. Ed. 2020; 59: 14854
- 12 Li P, Zakharov LN, Jasti R. Angew. Chem. Int. Ed. 2017; 56: 5237
- 13 Van Raden JM, White BM, Zakharov LN, Jasti R. Angew. Chem. Int. Ed. 2019; 58: 7341
- 14 Senthilkumar K, Kondratowicz M, Lis T, Chmielewski PJ, Cybińska J, Zafra JL, Casado J, Vives T, Crassous J, Favereau L, Stępień M. J. Am. Chem. Soc. 2019; 141: 7421
- 15 Schaub TA, Prantl EA, Kohn J, Bursch M, Marshall CR, Leonhardt EJ, Lovell TC, Zakharov LN, Brozek CK, Waldvogel SR, Grimme S, Jasti R. J. Am. Chem. Soc. 2020; 142: 8763
- 16 Wang L.-H, Hayase N, Sugiyama H, Nogami J, Uekusa H, Tanaka K. Angew. Chem. Int. Ed. 2020; 59: 17951
- 17 Xu W, Yang X.-D, Fan X.-B, Wang X, Tung C.-H, Wu L.-Z, Cong H. Angew. Chem. Int. Ed. 2019; 58: 3943
- 18 Yang Y, Blacque O, Sato S, Juríček M. Angew. Chem. Int. Ed. 2021; 60: 13529
- 19 Zhang W, Abdulkarim A, Golling FE, Räder HJ, Müllen K. Angew. Chem. Int. Ed. 2017; 56: 2645
- 20 Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science 2019; 365: 272
- 21 Fan Y.-Y, Chen D, Huang Z.-A, Zhu J, Tung C.-H, Wu L.-Z, Cong H. Nat. Commun. 2018; 9: 3037
- 22 Zhang X, Shi H, Zhuang G, Wang S, Wang J, Yang S, Shao X, Du P. Angew. Chem. Int. Ed. 2021; in press, DOI:
- 23 Bachrach SM, Zayat Z.-C. J. Org. Chem. 2016; 81: 4559
- 24 Hashimoto S, Iwamoto T, Kurachi D, Kayahara E, Yamago S. ChemPlusChem 2017; 82: 1015
- 25 Xia J, Golder MR, Foster ME, Wong BM, Jasti R. J. Am. Chem. Soc. 2012; 134: 19709
- 26 Ishii Y, Matsuura S, Segawa Y, Itami K. Org. Lett. 2014; 16: 2174
- 27 Li K, Xu Z, Deng H, Zhou Z, Dang Y, Sun Z. Angew. Chem. Int. Ed. 2021; 60: 7649
- 28 Xia J, Jasti R. Angew. Chem. Int. Ed. 2012; 51: 2474
- 29a Anet FA. L, Basus VJ. J. Magn. Reson. 1978; 32: 339
- 29b Okazawa N, Sorensen TS. Can. J. Chem. 1978; 56: 2737
- 29c Sun Z, Suenaga T, Sarkar P, Sato S, Kotani M, Isobe H. Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 8109
- 30 Adamska L, Nayyar I, Chen H, Swan AK, Oldani N, Fernandez-Alberti S, Golder MR, Jasti R, Doorn SK, Tretiak S. Nano Lett. 2014; 14: 6539
- 31a Reichardt C. Chem. Rev. 1994; 94: 2319
- 31b Hermann M, Wassy D, Esser B. Angew. Chem. Int. Ed. 2021; 60: 15743
- 32 Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S. Angew. Chem. Int. Ed. 2011; 50: 8342