Synlett 2021; 32(16): 1581-1587 DOI: 10.1055/a-1534-3103
Recent Advances in Dimeric Cycloparaphenylenes as Nanotube Fragments
Ke Li
,
Zhe Sun∗
Financial support from the National Natural Science Foundation of China (Grant No. 21971187, 21801182) and the Natural Science Foundation of Tianjin (19JCJQJC62700) is gratefully acknowledged.
Abstract
Since the discovery of cycloparaphenylenes in 2008, the chemical synthesis of more-complicated molecular systems with curved π-surfaces has been vigorously sought, giving rise to a plethora of new exciting molecules with various topologies and functions. This Synpacts article briefly summarizes recent examples of carbon nanohoop dimers, highlighting three examples as nanotube fragments. Their synthesis, isomerization, photophysical properties, and host–guest chemistry are discussed.
1 Introduction
2 Synthetic Strategy toward Nanotube Dimers
3 Isomerization Dynamics of Nanotube Dimers
4 Photophysical Properties of Nanotube Dimers
5 Host–Guest Chemistry of Nanotube Dimers
6 Conclusions
Key words
carbon nanohoops -
nanotube dimers -
isomerization -
host–guest chemistry
Publication History
Received: 11 June 2021
Accepted after revision: 23 June 2021
Accepted Manuscript online: 23 June 2021
Article published online: 16 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Lewis SE.
Chem. Soc. Rev. 2015; 44: 2221
2
Jasti R,
Bhattacharjee J,
Neaton JB,
Bertozzi CR.
J. Am. Chem. Soc. 2008; 130: 17646
3a
Yamago S,
Kayahara E.
Yuki Gosei Kagaku Kyokaishi 2019; 77: 1147
3b
Majewski MA,
Stępień M.
Angew. Chem. Int. Ed. 2019; 58: 86
3c
Luan Y,
Cong H.
Synlett 2017; 28: 1383
3d
Segawa Y,
Yagi A,
Matsui K,
Itami K.
Angew. Chem. Int. Ed. 2016; 55: 5136
4a
Sun Z,
Matsuno T,
Isobe H.
Bull. Chem. Soc. Jpn. 2018; 91: 907
4b
Rickhaus M,
Mayor M,
Juríček M.
Chem. Soc. Rev. 2017; 46: 1643
5
Leonhardt EJ,
Jasti R.
Nat. Rev. Chem. 2019; 3: 672
6a
Xu Y,
von Delius M.
Angew. Chem. Int. Ed. 2020; 59: 559
6b
Lu D,
Huang Q,
Wang S,
Wang J,
Huang P,
Du P.
Front. Chem. 2019; 7: 668
7a
Li P,
Sisto TJ,
Darzi ER,
Jasti R.
Org. Lett. 2014; 16: 182
7b
Iwamoto T,
Watanabe Y,
Sakamoto Y,
Suzuki T,
Yamago S.
J. Am. Chem. Soc. 2011; 133: 8354
7c
Alvarez MP,
Burrezo PM,
Kertesz M,
Iwamoto T,
Yamago S,
Xia J,
Jasti R,
Navarrete JT. L,
Taravillo M,
Baonza VG,
Casado J.
Angew. Chem. Int. Ed. 2014; 53: 7033
8a
Povie G,
Segawa Y,
Nishihara T,
Miyauchi Y,
Itami K.
Science 2017; 356: 172
8b
Povie G,
Segawa Y,
Nishihara T,
Miyauchi Y,
Itami K.
J. Am. Chem. Soc. 2018; 140: 10054
8c
Cheung KY,
Gui S,
Deng C,
Liang H,
Xia Z,
Liu Z,
Chi L,
Miao Q.
Chem 2019; 5: 838
9a
Sun Z,
Ikemoto K,
Fukunaga TM,
Koretsune T,
Arita R,
Sato S,
Isobe H.
Science 2019; 363: 151
9b
Ikemoto K,
Yang S,
Naito H,
Kotani M,
Sato S,
Isobe H.
Nat. Commun. 2020; 11: 1807
10a
Matsui K,
Segawa Y,
Namikawa T,
Kamada K,
Itami K.
Chem. Sci. 2013; 4: 84
10b
Matsui K,
Segawa Y,
Itami K.
J. Am. Chem. Soc. 2014; 136: 16452
10c
Kayahara E,
Iwamoto T,
Takaya H,
Suzuki T,
Fujitsuka M,
Majima T,
Yasuda N,
Matsuyama N,
Seki S,
Yamago S.
Nat. Commun. 2013; 4: 2694
11a
Ajami D,
Oeckler O,
Simon A,
Herges R.
Nature 2003; 426: 819
11b
Anju KS,
Das M,
Adinarayana B,
Suresh CH,
Srinivasan A.
Angew. Chem. Int. Ed. 2017; 56: 15667
11c
Naulet G,
Sturm L,
Robert A,
Dechambenoit P,
Röhricht F,
Herges R,
Bock H,
Durola F.
Chem. Sci. 2018; 9: 8930
11d
Luo Z,
Yang X,
Cai K,
Fu X,
Zhang D,
Ma Y,
Zhao D.
Angew. Chem. Int. Ed. 2020; 59: 14854
12
Li P,
Zakharov LN,
Jasti R.
Angew. Chem. Int. Ed. 2017; 56: 5237
13
Van Raden JM,
White BM,
Zakharov LN,
Jasti R.
Angew. Chem. Int. Ed. 2019; 58: 7341
14
Senthilkumar K,
Kondratowicz M,
Lis T,
Chmielewski PJ,
Cybińska J,
Zafra JL,
Casado J,
Vives T,
Crassous J,
Favereau L,
Stępień M.
J. Am. Chem. Soc. 2019; 141: 7421
15
Schaub TA,
Prantl EA,
Kohn J,
Bursch M,
Marshall CR,
Leonhardt EJ,
Lovell TC,
Zakharov LN,
Brozek CK,
Waldvogel SR,
Grimme S,
Jasti R.
J. Am. Chem. Soc. 2020; 142: 8763
16
Wang L.-H,
Hayase N,
Sugiyama H,
Nogami J,
Uekusa H,
Tanaka K.
Angew. Chem. Int. Ed. 2020; 59: 17951
17
Xu W,
Yang X.-D,
Fan X.-B,
Wang X,
Tung C.-H,
Wu L.-Z,
Cong H.
Angew. Chem. Int. Ed. 2019; 58: 3943
18
Yang Y,
Blacque O,
Sato S,
Juríček M.
Angew. Chem. Int. Ed. 2021; 60: 13529
19
Zhang W,
Abdulkarim A,
Golling FE,
Räder HJ,
Müllen K.
Angew. Chem. Int. Ed. 2017; 56: 2645
20
Segawa Y,
Kuwayama M,
Hijikata Y,
Fushimi M,
Nishihara T,
Pirillo J,
Shirasaki J,
Kubota N,
Itami K.
Science 2019; 365: 272
21
Fan Y.-Y,
Chen D,
Huang Z.-A,
Zhu J,
Tung C.-H,
Wu L.-Z,
Cong H.
Nat. Commun. 2018; 9: 3037
22
Zhang X,
Shi H,
Zhuang G,
Wang S,
Wang J,
Yang S,
Shao X,
Du P.
Angew. Chem. Int. Ed. 2021; in press, DOI:
23
Bachrach SM,
Zayat Z.-C.
J. Org. Chem. 2016; 81: 4559
24
Hashimoto S,
Iwamoto T,
Kurachi D,
Kayahara E,
Yamago S.
ChemPlusChem 2017; 82: 1015
25
Xia J,
Golder MR,
Foster ME,
Wong BM,
Jasti R.
J. Am. Chem. Soc. 2012; 134: 19709
26
Ishii Y,
Matsuura S,
Segawa Y,
Itami K.
Org. Lett. 2014; 16: 2174
27
Li K,
Xu Z,
Deng H,
Zhou Z,
Dang Y,
Sun Z.
Angew. Chem. Int. Ed. 2021; 60: 7649
28
Xia J,
Jasti R.
Angew. Chem. Int. Ed. 2012; 51: 2474
29a
Anet FA. L,
Basus VJ.
J. Magn. Reson. 1978; 32: 339
29b
Okazawa N,
Sorensen TS.
Can. J. Chem. 1978; 56: 2737
29c
Sun Z,
Suenaga T,
Sarkar P,
Sato S,
Kotani M,
Isobe H.
Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 8109
30
Adamska L,
Nayyar I,
Chen H,
Swan AK,
Oldani N,
Fernandez-Alberti S,
Golder MR,
Jasti R,
Doorn SK,
Tretiak S.
Nano Lett. 2014; 14: 6539
31a
Reichardt C.
Chem. Rev. 1994; 94: 2319
31b
Hermann M,
Wassy D,
Esser B.
Angew. Chem. Int. Ed. 2021; 60: 15743
32
Iwamoto T,
Watanabe Y,
Sadahiro T,
Haino T,
Yamago S.
Angew. Chem. Int. Ed. 2011; 50: 8342
33a
Matsuno T,
Sato S,
Yokoyama A,
Kamata S,
Isobe H.
Angew. Chem. Int. Ed. 2016; 55: 15339
33b
Rio J,
Beeck S,
Rotas G,
Ahles S,
Jacquemin D,
Tagmatarchis N,
Ewels C,
Wegner HA.
Angew. Chem. Int. Ed. 2018; 57: 6930