Synlett 2023; 34(10): 1169-1173 DOI: 10.1055/a-1937-9296
cluster
Dispersion Effects
Activation Barriers for Cobalt(IV)-Centered Reductive Elimination Correlate with Quantified Interatomic Noncovalent Interactions
Lucas Loir-Mongazon
,
Carmen Antuña-Hörlein
,
Christophe Deraedt
,
Yann Cornaton∗
,
Centre national de la Recherche Scientifique, University of Strasbourg, GENCI-IDRIS grant 2021-A0100812469, the HPC Center of the University of Strasbourg grant g2021a248c.
Abstract
In this joint theoretical and experimental study, an analysis of weak interligand noncovalent interactions within Co(IV) [Cp*Co(phpy )X]+ cobaltacycles (phpy = 2-phenylenepyridine, κ
C ,N
) was carried out by using the independent gradient model/intrinsic bond strength index (IGM/IBSI) method to evaluate the dependency of the catalytically desired reductive elimination pathway (RE) on the nature of the X ligand. It is shown that the barrier for activation of the RE pathway correlates directly with the IBSI of the X-to-carbanionic chelate’s carbon. This correlation suggests that in silico prediction of which X ligand is more prone to operate an efficient Cp*Co-catalyzed directed X-functionalization of an aromatic C–H bond is attainable. A set of experiments involving various sources of X ligands supported the theoretical conclusions.
Key words
metallacycles -
cobalt catalysis -
density functional theory -
noncovalent interactions -
reductive elimination -
C–H bond activation
Publication History
Received: 13 July 2022
Accepted after revision: 06 September 2022
Accepted Manuscript online: 06 September 2022
Article published online: 11 October 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Cornaton Y,
Djukic J.-P.
Acc. Chem. Res. 2021; 54: 3828
1b
Liptrot DJ,
Power PP.
Nat. Rev. Chem. 2017; 1: 0004
1c
Oeschger RJ,
Bissig R,
Chen P.
J. Am. Chem. Soc. 2022; 144: 10330
1d
Lyngvi E,
Sanhueza IA,
Schoenebeck F.
Organometallics 2015; 34: 805
1e
Johansson MP,
Niederegger L,
Rauhalahti M,
Hess CR,
Kaila VR. I.
RSC Adv. 2021; 11: 425
1f
Meyer TH,
Oliveira JC. A,
Ghorai D,
Ackermann L.
Angew. Chem. Int. Ed. 2020; 59: 10955
2a
Wu F,
Deraedt C,
Cornaton Y,
Contreras-Garcia J,
Boucher M,
Karmazin L,
Bailly C,
Djukic J.-P.
Organometallics 2020; 39: 2609
2b
Jerhaoui S,
Djukic J.-P,
Wencel-Delord J,
Colobert F.
ACS Catal. 2019; 9: 2532
2c
Cornaton Y,
Djukic J.-P.
Phys. Chem. Chem. Phys. 2019; 21: 20486
3
Lapointe D,
Fagnou K.
Chem. Lett. 2010; 39: 1118
4
Boutadla Y,
Davies DL,
Macgregor SA,
Poblador-Bahamonde AI.
Dalton Trans. 2009; 5820
5
Gallego D,
Baquero EA.
Open Chem. 2018; 16: 1001
6
Zell D,
Bursch M,
Müller V,
Grimme S,
Ackermann L.
Angew. Chem. Int. Ed. 2017; 56: 10378
7a
Sinha SK,
Guin S,
Maiti S,
Biswas JP,
Porey S,
Maiti D.
Chem. Rev. 2022; 122: 5682
7b
Mandal R,
Garai B,
Sundararaju B.
ACS Catal. 2022; 12: 3452
8a
Yoshikai N.
Synlett 2011; 1047
8b
Punji B,
Song W,
Shevchenko GA,
Ackermann L.
Chem. Eur. J. 2013; 19: 10605
8c
Yoshikai N.
Bull. Chem. Soc. Jpn. 2014; 87: 843
8d
Yoshino T,
Matsunaga S.
Adv. Synth. Catal. 2017; 359: 1245
8e
Zhao Q,
Poisson T,
Pannecoucke X,
Besset T.
Synthesis 2017; 49: 4808
8f
Cheng H,
Hernández JG,
Bolm C.
Adv. Synth. Catal. 2018; 360: 1800
8g
Prakash S,
Kuppusamy R,
Cheng C.-H.
ChemCatChem 2018; 10: 683
8h
Ghorai J,
Anbarasan P.
Asian J. Org. Chem. 2019; 8: 430
8i
Yoshino T,
Matsunaga S.
Adv. Organomet. Chem. 2019; 68: 197
8j
Liu Y,
You T,
Wang H.-X,
Tang Z,
Zhou C.-Y,
Che C.-M.
Chem. Soc. Rev. 2020; 49: 5310
8k
Lukasevics L,
Grigorjeva L.
Org. Biomol. Chem. 2020; 18: 7460
8l
Gandeepan P,
Müller T,
Zell D,
Cera G,
Warratz S,
Ackermann L.
Chem. Rev. 2019; 119: 2192
9a
López-Resano S,
Martínez de Salinas S,
Garcés-Pineda FA,
Moneo-Corcuera A,
Galán-Mascarós JR,
Maseras F,
Pérez-Temprano MH.
Angew. Chem. Int. Ed. 2021; 60: 11217
9b
Wu F,
Deraedt C,
Cornaton Y,
Ruhlmann L,
Karmazin L,
Bailly C,
Kyritsakas N,
Le Breton N,
Choua S,
Djukic J.-P.
Organometallics 2021; 40: 2624
10
Gensch T,
Klauck FJ. R,
Glorius F.
Angew. Chem. Int. Ed. 2016; 55: 11287
11a
Lefebvre C,
Rubez G,
Khartabil H,
Boisson J.-C,
Contreras-García J,
Hénon E.
Phys. Chem. Chem. Phys. 2017; 19: 17928
11b
Lefebvre C,
Khartabil H,
Boisson J.-C,
Contreras-García J,
Piquemal J.-P,
Hénon E.
ChemPhysChem 2018; 19: 724
12a
Ponce-Vargas M,
Lefebvre C,
Boisson J.-C,
Hénon E.
J. Chem. Inf. Model. 2020; 60: 268
12b
Klein J,
Khartabil H,
Boisson J.-C,
Contreras-García J,
Piquemal J.-P,
Hénon E.
J. Phys. Chem. A 2020; 124: 1850
13
Yoshikai N,
Asako S,
Yamakawa T,
Ilies L,
Nakamura E.
Chem. Asian J. 2011; 6: 3059
14a
Seyferth D.
Organometallics 2009; 28: 1598
14b
Peltzer RM,
Eisenstein O,
Nova A,
Cascella M.
J. Phys. Chem. B 2017; 121: 4226
15
Tammiku-Taul J,
Burk P,
Tuulmets A.
J. Phys. Chem. A 2004; 108: 133
16
Guo Y,
Yang J,
NuLi Y,
Wang J.
Electrochem. Commun. 2010; 12: 1671
17
Norinder J,
Matsumoto A,
Yoshikai N,
Nakamura E.
J. Am. Chem. Soc. 2008; 130: 5858
18a
Boddie TE,
Carpenter SH,
Baker TM,
DeMuth JC,
Cera G,
Brennessel WW,
Ackermann L,
Neidig ML.
J. Am. Chem. Soc. 2019; 141: 12338
18b
Zhu C,
Stangier M,
Oliveira JC. A,
Massignan L,
Ackermann L.
Chem. Eur. J. 2019; 25: 16382
19a
Szadkowska A,
Gstrein X,
Burtscher D,
Jarzembska K,
Woźniak K,
Slugovc C,
Grela K.
Organometallics 2010; 29: 117
19b
Núñez A,
Cuadro AM,
Alvarez-Builla J,
Vaquero JJ.
Org. Lett. 2007; 9: 2977
20
Kim J,
Shin K,
Jin S,
Kim D,
Chang S.
J. Am. Chem. Soc. 2019; 141: 4137