Ultraschall Med 2023; 44(05): 520-536
DOI: 10.1055/a-2020-9904
Guidelines & Recommendations

Best Practice Guideline – DEGUM Recommendations on Breast Ultrasound

PART II Additive and Optional Application Modalities in Breast Ultrasound, Quality Assurance Article in several languages: deutsch | English
Claudia Maria Vogel-Minea
1   Brustzentrum, Diagnostische und Interventionelle Senologie, Rottal-Inn Kliniken Eggenfelden, Eggenfelden, Germany (Ringgold ID: RIN91792)
,
Werner Bader
2   Zentrum für Frauenheilkunde, Brustzentrum, Universitätsklinikum OWL der Universität Bielefeld, Campus Klinikum Bielefeld, Bielefeld, Germany
,
Jens-Uwe Blohmer
3   Klinik für Gynäkologie mit Brustzentrum, Charité Universitätsmedizin Berlin, Berlin, Germany (Ringgold ID: RIN14903)
,
Volker Duda
4   Senologische Diagnostik, Universitätsklinikum Gießen und Marburg, Marburg, Germany
,
Christian Eichler
5   Klinik für Brusterkrankungen, St Franziskus-Hospital Münster GmbH, Münster, Germany (Ringgold ID: RIN39612)
,
Eva Maria Fallenberg
6   Department of Diagnostic and Interventional Radiology, Technical University of Munich Hospital Rechts der Isar, Munich, Germany (Ringgold ID: RIN27190)
,
André Farrokh
7   Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Kiel, Germany (Ringgold ID: RIN54186)
,
8   Sektion Senologie, Universitäts-Frauenklinik Heidelberg, Heidelberg, Germany
9   Brustzentrum Heidelberg, Klinik St. Elisabeth, Heidelberg, Germany
,
Ines Gruber
10   Frauenklinik, Department für Frauengesundheit, Universitätsklinikum Tübingen, Tübingen, Germany (Ringgold ID: RIN27203)
,
Bernhard-Joachim Hackelöer
11   Barkhof, Amedes Experts, Hamburg, Germany
,
Jörg Heil
8   Sektion Senologie, Universitäts-Frauenklinik Heidelberg, Heidelberg, Germany
9   Brustzentrum Heidelberg, Klinik St. Elisabeth, Heidelberg, Germany
,
Helmut Madjar
12   Gynäkologie und Senologie, Praxis für Gynäkologie, Wiesbaden, Germany
,
Ellen Marzotko
13   Mammadiagnostik, Frauenheilkunde und Geburtshilfe, Praxis, Erfurt, Germany
,
Eberhard Merz
14   Frauenheilkunde, Zentrum für Ultraschall und Pränatalmedizin, Frankfurt, Germany
,
Markus Müller-Schimpfle
15   DKG-Brustzentrum, Klinik für Radiologie, Neuroradiologie und Nuklearmedizin, varisano Klinikum Frankfurt Höchst, Frankfurt am Main, Germany
,
Alexander Mundinger
16   Brustzentrum Osnabrück - Bildgebende und interventionelle Mamma Diagnostik, Franziskus Hospital Harderberg, Niels Stensen Kliniken, Georgsmarienhütte, Germany
,
Ralf Ohlinger
17   Interdisziplinäres Brustzentrum, Universitätsmedizin Greifswald, Klinik für Frauenheilkunde und Geburtshilfe, Greifswald, Germany
,
Uwe Peisker
18   BrustCentrum Aachen-Kreis Heinsberg, Hermann-Josef Krankenhaus, Akademisches Lehrkrankenhaus der RWTH-Aachen, Erkelenz, Germany
,
Fritz KW Schäfer
19   Bereich Mammadiagnostik und Interventionen, Universitätsklinikum Schleswig-Holstein, Kiel, Germany (Ringgold ID: RIN54186)
,
Ruediger Schulz-Wendtland
20   Gynäkologische Radiologie, Universitätsklinikum Erlangen Radiologisches Institut, Erlangen, Germany (Ringgold ID: RIN197668)
,
Christine Solbach
21   Senologie, Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Frankfurt, Frankfurt, Germany
,
Mathias Warm
22   Brustzentrum, Krankenhaus Holweide, Kliniken der Stadt Köln, Koeln, Germany
,
Dirk Watermann
23   Frauenklinik, Evangelisches Diakoniekrankenhaus, Freiburg, Germany
,
24   Zentrum für Frauenheilkunde, Brustzentrum, Universitätsklinikum OWL Bielefeld, Bielefeld, Germany
,
Heiko Dudwiesus
25   Sonodidaktika, Sonodidaktika, Langenfeld, Germany
,
Markus Hahn
26   Frauenklinik, Department für Frauengesundheit, Universität Tübingen, Tübingen, Germany
› Author Affiliations

Abstract

Alongside mammography, breast ultrasound is an important and well-established method in assessment of breast lesions. With the “Best Practice Guideline”, the DEGUM Breast Ultrasound (in German, “Mammasonografie”) working group, intends to describe the additional and optional application modalities for the diagnostic confirmation of breast findings and to express DEGUM recommendations in this Part II, in addition to the current dignity criteria and assessment categories published in Part I, in order to facilitate the differential diagnosis of ambiguous lesions.

The present “Best Practice Guideline” has set itself the goal of meeting the requirements for quality assurance and ensuring quality-controlled performance of breast ultrasound. The most important aspects of quality assurance are explained in this Part II of the Best Practice Guideline.



Publication History

Received: 04 November 2022

Accepted after revision: 26 January 2023

Article published online:
18 April 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Interdisziplinäre S3-Leitlinie Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms, Version 4.3, 2020, AWMF Registernummer: 032–045OL.
  • 2 Vaupel P. Tumor blood flow. In: Molls M, Vaupel P. Blood perfusion and microenvironment of human tumors. Berlin: Springer; 1998: 40-45
  • 3 Blohmer JU, Reinhardt M, Schmalisch G. et al. Videodensitometry in the examination of focal breast lesions after injection of an ultrasound contrast agent. Anticancer Res 2006; 26 (02) 1691-1698
  • 4 Madjar H, Sauerbrei W, Münch S. et al. Methodenanalyse zur Doppleruntersuchung der weiblichen Brust [Analysis of a method for Doppler study of the female breast]. Ultraschall Med 1990; 11 (04) 196-201
  • 5 Madjar H, Prömpeler HJ, Sauerbrei W. et al. Color Doppler flow criteria of breast lesions. Ultrasound Med Biol 1994; 20 (09) 849-858
  • 6 Lee EJ, Chang YW, Oh E. et al. Reproducibility and diagnostic performance of the vascular index of superb microvascular imaging in real-time breast ultrasonography for evaluating breast masses. Ultrasonography 2020;
  • 7 Madjar H, Sauerbrei W, Hansen L. et al. Multivariate Analysis of Flow Data in Breast Lesions and Validation in a Normal Clinical Setting. Ultraschall in Med 2011; 32: 511-517
  • 8 Madjar H, Prömpeler HJ, Del Favero C. et al. A new Doppler signal enhancing agent for flow assessment in breast lesions. Eur J Ultrasound 2000; 12 (02) 123-130
  • 9 Kapetas P, Clauser P, Woitek R. et al. Quantitative Multiparametric Breast Ultrasound: Application of Contrast-Enhanced Ultrasound and Elastography Leads to an Improved Differentiation of Benign and Malignant Lesions. Invest Radiol 2019; 54 (05) 257-264
  • 10 Svensson W, Pandian AJ, Hashimoto H. The use of Breast Ultrasound Color Doppler Vascular Pattern Morphology Improves Diagnostic Sensitivity with minimal Change of Specificity. Ultraschall in Med 2010; 31: 466-474
  • 11 Hallock GG. Acoustic Doppler sonography, color duplex ultrasound, and laser Doppler flowmetry as tools for successful autologous breast reconstruction. Clin Plast Surg 2011; 38 (02) 203-211
  • 12 American College of Radiology (ACR). ACR- BI-RADS – Ultrasound. In: ACR Breast Imaging Reporting and Data System. Breast Imaging Atlas. 5th ed. In: Reston VA. American College of Radiology. 2013
  • 13 Madjar H, Ohlinger R, Mundinger A. et al. BI-RADS analoge DEGUM Kriterien von Ultraschallbefunden der Brust – Konsensus des Arbeitskreises Mammasonographie der DEGUM. Ultraschall Med 2006; 27: 374-379
  • 14 Bader W, Vogel-Minea C, Blohmer JU. et al. Best Practice Guideline – Empfehlungen der DEGUM zur Durchführung und Beurteilung der Mammasonografie – TEIL I -Untersuchungstechnik, Ultraschall DEGUM Kriterien und deren Dokumentation. Ultraschall Med 2022; 43 (06) 570-582
  • 15 Ophir J, Céspedes I, Ponnekanti H. et al. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13 (02) 111-134
  • 16 Krouskop TA, Wheeler TM, Kallel F. et al. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 1998; 20 (04) 260-274
  • 17 Wells PNT, Liang HD. et al. Medical ultrasound: Imaging of soft tissue strain and elasticity. J R Soc Interface 2011; 8 (64) 1521-1549
  • 18 Barr RG. Sonographic breast elastography: a primer. J Ultrasound Med 2012; 31 (05) 773-783
  • 19 Wojcinski S, Farrokh A, Weber S. et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS-US classification system with sonoelastography. Ultraschall Med 2010; 31 (05) 484-491
  • 20 Farrokh A, Wojcinski S, Degenhardt F. et al. Diagnostische Aussagekraft der Strain-Ratio-Messung zur Unterscheidung zwischen malignen und benignen Brusttumoren. Ultraschall Med 2011; 32 (04) 400-405
  • 21 Sadigh G, Carlos RC, Neal CH. et al. Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat 2012; 133 (01) 23-35
  • 22 Wojcinski S, Boehme E, Farrokh A. et al. Ultrasound real-time elastography can predict malignancy in BI-RADS-US 3 lesions. BMC Cancer 2013; 13: 159
  • 23 Sadigh G, Carlos RC, Neal CH. et al. Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat 2012; 134 (03) 923-931
  • 24 Barr RG, De Silvestri A, Scotti V. et al. Diagnostic Performance and Accuracy of the 3 Interpreting Methods of Breast Strain Elastography: A Systematic Review and Meta-analysis. J Ultrasound Med 2019; 38 (06) 1397-1404
  • 25 Golatta M, Schweitzer-Martin M, Harcos A. et al. Evaluation of virtual touch tissue Imaging quantification, a new shear wave velocity imaging method, for breast lesion assessment by ultrasound. Biomed Res Int 2014; 2014: 960262
  • 26 Ianculescu V, Ciolovan LM, Dunant A. et al. Added value of Virtual Touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Eur J Radiol 2014; 83 (05) 773-777
  • 27 Kapetas P, Clauser P, Woitek R. et al. Virtual Touch IQ elastography reduces unnecessary breast biopsies by applying quantitative “rule-in” and “rule-out” threshold values. Sci Rep 2018; 8 (01) 3583
  • 28 Sun JW, Wang XL, Zhao Q. et al. Virtual touch tissue imaging and quantification (VTIQ) in the evaluation of breast lesions: The associated factors leading to misdiagnosis. Eur J Radiol 2019; 110: 97-104
  • 29 Li XL, Xu HX, Bo XW. et al. Value of Virtual Touch Tissue Imaging Quantification for Evaluation of Ultrasound Breast Imaging-Reporting and Data System Category 4 Lesions. Ultrasound Med Biol 2016; 42 (09) 2050-2057
  • 30 Kong WT, Zhou WJ, Wang Y. et al. The value of virtual touch tissue imaging quantification in the differential diagnosis between benign and malignant breast lesions. J Med Ultrason (2001) 2019; 46 (04) 459-466
  • 31 Wojcinski S, Brandhorst K, Sadigh G. et al. Acoustic radiation force impulse imaging with Virtual Touch TM tissue quantification: mean shear wave velocity of malignant and benign breast masses. Int J Womens Health 2013; 5: 619-627
  • 32 Berg WA, Cosgrove DO, Dore CJ. et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 Masses. Radiology 2012; 262 (02) 435-449
  • 33 Bamber J, Cosgrove D, Dietrich CF. et al. EFSUMG Guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med 2013; 34 (02) 169-184
  • 34 Schäfer F, Hooley R, Ohlinger R. et al. ShearWave Elastography multinational breast study: additional SWE features support potential to downgrade BI-RADS-3 lesions. Ultraschall Med 2013; 34 (03) 254-259
  • 35 Golatta M, Pfob A, Büsch C. et al. The Potential of Shear-Wave Elastography to Reduce Unnecessary Biopsies in Breast Cancer Diagnostics – An International, Diagnostic, Multicenter Trial. UiM 2021;
  • 36 Pillai A, Voruganti T, Barr R. et al. Diagnostic Accuracy of Shear-Wave Elastography for Breast Lesion Characterization in Women: A Systematic Review and Meta-Analysis. J Am Coll Radiol 2022; 19 (05) 625-634.e0
  • 37 Barr RG. Breast elastography: How to Perform and Integrate Into a “Best–Practice” Patient Treatment Algorithm. J Ultrasound Med 2020; 39 (01) 7-17
  • 38 Golatta M, Pfob A, Büsch C. et al. The potential of combined shear-wave and strain elastography to reduce unnecessary biopsies in breast cancer diagnostics – An international, multicenter trial. Eur J Cancer 2022; 161: 1-9
  • 39 Comission for Hospital Hygiene and Infection Prevention (KRINKO); Federal Institute for Drugs and Medical Devices (BfArM). Anforderungen an die Hygiene bei Punktionen und Injektionen. Bundesgesundheitsbl 2011; 54: 1135-1144
  • 40 Heil J, Hug S, Martiny H. et al. Standards of hygiene for ultrasound-guided core cut biopsies of the breast. Ultraschall Med 2018; 39 (06) 636-642
  • 41 Gruber I, Oberlechner E, Heck K. et al. Percutaneous Ultrasound-Guided Core Needle Biopsy: Comparison of 16-Gauge versus 14-Gauge Needle and the Effect of Coaxial Guidance in 1065 Breast Biopsies – A Prospective Randomized Clinical Noninferiority Trial. Ultraschall Med 2020; 41 (05) 534-543
  • 42 Krainick-Strobel U, Huber B, Majer I. et al. Complete extirpation of benign breast lesions with an ultrasound-guided vacuum biopsy system. Ultrasound Obstet Gynecol 2007; 29 (03) 342-346
  • 43 Hahn M, Krainick-Strobel U, Toellner T. et al. Minimally Invasive Breast Intervention Study Group (AG MiMi) of the German Society of Senology (DGS); Study Group for Breast Ultrasonography of the German Society for Ultrasound in Medicine (DEGUM). Interdisciplinary consensus recommendations for the use of vacuum-assisted breast biopsy under sonographic guidance: first update 2012. Ultraschall Med 2012; 33 (04) 366-371
  • 44 Mc Mahon P, Reichmann M, Dodelzon K. Bleeding risk after percutaneous breast needle biopsy in patients on anticoagulation therapy. Clin Imaging 2021; 70: 114-117
  • 45 Chesebro AL, Chikarmane SA, Ritner JA. et al. Troubleshooting to Overcome Technical Challenges in Image-guided Breast Biopsy. Radiographics 2017; 37: 705-718
  • 46 https://www.awmf.org/leitlinien/detail/ll/001–005.html
  • 47 Rotten D, Levaillant JM, Zerat L. Analysis of normal breast tissue and of solid breast masses using three-dimensional ultrasound mammography. Ultrasound Obstet Gynecol 1999; 14 (02) 114-124
  • 48 Weismann C, Hergan K. Aktueller Stand der 3D-/4D-Volumensonografie der Mamma [Current status of 3D/4D volume ultrasound of the breast]. Ultraschall in Med 2007; 28 (03) 273-282
  • 49 Merz E, Oberstein A. 3D and 4D breast ultrasound. In: Ultrasound in obstetrics and gynecology. Vol. 2: Gynecology. New York: Thieme Stuttgart; 2007
  • 50 Weismann C, Mayr C, Egger H. et al. Breast sonography — 2D, 3D, 4D ultrasound or elastography?. Breast Care (Basel) 2011; 6 (02) 98-103
  • 51 Merz E, Kurjak A. 1989–2019: 30 Years of 3D Ultrasound in Obstetrics and Gynecology. Donald School Journal of Ultrasound in Obstetrics and Gynecology 2018; 12 (02) 1-5
  • 52 Hackelöer BJ, Lauth G, Duda V. et al. Neue Möglichkeiten der Ultraschallmammographie [New aspects in ultrasound mammography (author’s translation)]. Geburtshilfe Frauenheilkd 1980; 40 (04) 301-312
  • 53 Madjar H, Mendelson EB. The practice of breast ultrasound. Techniques – Findings – Differential diagnosis. New York: Thieme Stuttgart; 2008
  • 54 Hille H, Vetter M, Hackelöer BJ. The accuracy of BI-RADS classification of breast ultrasound as a first- line imaging method. Ultraschall Med 2012; 33 (02) 160-163
  • 55 Merz E. 3-D ultrasound in prenatal diagnosis. In: Merz E. Ultrasound in obstetrics and gynecology. Vol. 1: Obstetrics. New York: Thieme Stuttgart; 2005: 516-528
  • 56 Merz E, Oberstein A. Three-dimensional ultrasound for the evaluation of breast masses: a multiplanar analysis of the growth pattern of 180 tumors. Ultrasound Obstet Gynecol 2006; 28: 506-507
  • 57 Hackelöer BJ. Bildgebende Methoden in der Mammadiagnostik – welche ist die beste?. J Gynäkol Endokrinol 2017; 20: 145-150
  • 58 Weismann CF, Forstner R, Prokop E. et al. Three-dimensional targeting: a new three-dimensional ultrasound technique to evaluate needle position during breast biopsy. Ultrasound Obstet Gynecol 2000; 16 (04) 359-364
  • 59 Lell M, Wenkel E, Aichinger U. et al. Einsatz des 3D Ultraschalls bei der Stanzbiopsie unklarer Mammaläsionen [3D Ultrasound in core breast biopsy]. Ultraschall Med 2004; 25 (02) 126-130
  • 60 Boyd NF, Guo H, Martin LJ. et al. Mammographic Density and the Risk and Detection of Breast Cancer. N Engl J Med 2007; 356 (03) 227-236
  • 61 Brem RF, Tabar L, Duffy SW. et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the Somolnsight Study. Radiology 2015; 274 (03) 663-673
  • 62 Wilczek B, Wilczek HE, Rasouliyan K. et al. Adding 3D Automated Breast Ultrasound to Mammography Screening in women with heterogeneosly and extremly dense breasts: Report from a hospital-based, high-volume, single-center cancer screening program. Eur J Radiol 2016; 85 (09) 1554-1563
  • 63 Grady I, Gorsuch-Rafferty H, Hansen P. Sonographic Tomography for the preoperative staging of breast cancer prior to surgery. J Ultrasound 2010; 13 (02) 41-45
  • 64 Schulz-Wendtland R, Wittenberg T, Michel T. et al. Zukunft mammographiebasierter Bildgebung [Future of mammography-based imaging]. Radiologe 2014; 54 (03) 217-223
  • 65 Hopp T, Baltzer P, Dietzel M. et al. 2D/3D image fusion of X-ray mammograms with breast MRI: visualizing dynamic contrast enhancement in mammograms. Int J Comput Assist Radiol Surg 2012; 7 (03) 339-348
  • 66 Fischer B, Lassen U, Mortensen J. et al. Preoperative staging of lung cancer with combined PET–CT. N Engl J Med 2009; 361 (01) 32-39
  • 67 Richter K, Prihoda H, Heywang-Köbrunner S. et al. Description and first clinical use of a new system for combined mammography and automated clinical amplitude/velocity reconstructive imaging breast sonography. Invest Radiol 1997; 32 (01) 19-28
  • 68 Richter K, Hamm B, Heywang-Köbrunner S. et al. Automatisierte Mammasonographie und Mammographie: Differenzierung maligner und benigner Mammaläsionen [Automated mammary sonography and mammography: the differentiation of benign and malignant breast lesions]. Rofo 1998; 169 (03) 245-52
  • 69 Schulz-Wendtland R, Jud SM, Fasching PA. et al. A Standard Mammography Unit – Standard 3D Ultrasound Probe Fusion Prototype: First Results. Geburtshilfe Frauenheilkd 2017; 77 (06) 679-685
  • 70 Emons J, Wunderle M, Hartmann A. et al. Initial clinical results with a fusion prototype for mammography and three-dimensional ultrasound with a standard mammography system and a standard ultrasound probe. Acta Radiol 2018; 59 (12) 1406-1413
  • 71 Wasner S, Schulz-Wendtland R, Emons J. Fusion von Mammographie und Ultraschall [Fusion of mammography and mammasonography]. Radiologe 2021; 61 (02) 166-169
  • 72 Schäfgen B, Juskic M, Radicke M. et al. Evaluation oft he FUSION-X-US-II prototype to combine automated breast ultrasound and tomosynthesis. Eur Radiol 2021; 31 (06) 3712-3720
  • 73 Schaefgen B, Heil J, Barr RG. et al. Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis. Eur Radiol 2018; 28 (06) 2499-2506
  • 74 Zhang X, Lin X, Zhang Z. et al. Artificial Intelligence Medical Ultrasound Equipment: Application of Breast Lesions Detection. Ultrason Imaging 2020; 42 (04) 191-202
  • 75 Duda VF, Storch A. Mammasonografische Stolpersteine – Ersetzt Künstliche Intelligenz (KI) Erfahrungswissen?. FRAUENARZT 2020; 61/11: 762-765
  • 76 Torres-Velázquez M, Chen WJ, Li X. et al. Application and Construction of Deep Learning Networks in Medical Imaging. IEEE transactions on radiation and plasma medical sciences 2021; 5 (02) 137-159
  • 77 van Zelst JC, Tan T, Mann RM. et al. Validation of radiologists’ findings by computer-aided detection (CAD) software in breast cancer detection with automated 3D breast ultrasound: a concept study in implementation of artificial intelligence software. Acta Radiol 2020; 61 (03) 312-320
  • 78 Wang Y, Choi EJ, Choi Y. et al. Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning. Ultrasound Med Biol 2020; 46 (05) 1119-1132
  • 79 Dembrower K, Wåhlin E, Liu Y. et al. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. Lancet Digit Health 2020; 2 (09) e468-e474
  • 80 Cao Z, Duan L, Yang G. et al. An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures. BMC Med Imaging 2019; 19 (01) 51
  • 81 Wu GG, Zhou LQ, Xu JW. et al. Artificial intelligence in breast ultrasound. World J Radiol 2019; 11 (02) 19-26
  • 82 Zhang Q, Xiao Y, Dai W. et al. Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 2016; 72: 150-157
  • 83 Madjar H, Mundinger A, Degenhardt F. et al. Qualitätskontrolle in der Mamma-Sonographie. [Quality control in breast sonography]. Ultraschall Med 2003; 24 (03) 190-194
  • 84 Wildner S, Kollmann C. Technische Ultraschall-Qualitätssicherung im Rahmen des österreichischen Mammografie-Screening-Pilotprojekts nach EUREF-Ö: Konzept und praktische Durchführung. Radiopraxis 2013; 6: 153-159
  • 85 https://www.degum.de/arbeitskreise/mammasonografie/mehrstufenkonzept-zertifizierung.html
  • 86 Schaefer FK, Waldmann A, Katalinic A. et al. Influence of additional breast ultrasound on cancer detection in a cohort study for qualitiy assurance in breast diagnosis – analysis of 102,577 diagnostic procedures. Eur Radiol 2010; 20 (05) 1085-1092
  • 87 Waldmann A, Adrich S, Eisemann N. et al. Struktur- und Prozessqualität in der qualitätsgesicherten Mammadiagnostik in Schleswig-Holstein [Structure and process quality of quality-assured mamma diagnostics in Schleswig-Holstein]. Rofo 2012; 184 (02) 113-121
  • 88 www.kbv.de. www.kbv.de/html/ultraschall.php
  • 89 Kollmann C, deKorte C, Dudley NJ. et al. EFSUMB Technical Quality Assurance Group –US-TQA/B. Guideline for Technical Quality Assurance(TQA) of ultrasound devices (B-Mode)—version 1.0 (July 2012):EFSUMB technical Quality Assurance Group – US-TQA/B. Ultraschall Med 2012; 33 (06) 544-549
  • 90 https://dx.doi.org/10.31030/3306068