Synlett 2023; 34(12): 1391-1394 DOI: 10.1055/a-2059-3003
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science
Metal- and Additive-Free Synthesis of α-Hydroxyamino Ketones Enabled by Organophotocatalyst
,
Tadachika Matsudaira
,
The authors acknowledge a Grant-in Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS, Grant Number JP20H00380).
Dedicated to Professor Masahiro Murakami on the occasion of his retirement from Kyoto University
Abstract
We report herein a straightforward method for the synthesis of α-hydroxyamino ketones, which involves the benzoylation reaction of nitrones with 2-benzoyl-2-phenylbenzothiazoline under organophotocatalysis. This method offers access to a variety α-hydroxyamino ketones without the use of any transition-metal catalyst or base. Control experiments suggested that the reaction proceeded through a benzoyl radical addition to nitrone. Benzothiazoline was found to be a more suitable radical precursor than Hantzsch ester.
Key words
hydroxyamino ketone -
hydroxylamine -
nitrone -
benzothiazoline -
organophotocatalyst -
metal-free
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2059-3003.
Supporting Information
Publikationsverlauf
Eingereicht: 09. Februar 2023
Angenommen nach Revision: 21. März 2023
Accepted Manuscript online: 21. März 2023
Artikel online veröffentlicht: 14. April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Judd TC,
Williams RM.
Angew. Chem. Int. Ed. 2002; 41: 4683
1b
Bugg T.
ChemBioChem 2014; 15: 2467
1c
Lambert KM,
Cox JB,
Liu L,
Jackson AC,
Yruegas S,
Wiberg KB,
Wood JL.
Angew. Chem. Int. Ed. 2002; 41: 4686
2a
Hill J,
Hettikankanamalage AA,
Crich D.
J. Am. Chem. Soc. 2020; 142: 14820
2b
Hill J,
Crich D.
ACS Med. Chem. Lett. 2022; 13: 799
For selected exaples, see:
3a
Niu D,
Buchwald SL.
J. Am. Chem. Soc. 2015; 137: 9716
3b
Zhu S,
Niljianskul N,
Buchwald SL.
J. Am. Chem. Soc. 2013; 135: 15746
4a
Svejstrup TD,
Ruffoni A,
Julia F,
Aubert VM,
Leonori D.
Angew. Chem. Int. Ed. 2017; 56: 14948
4b
Chen J,
Xu Y,
Shao W,
Ji J,
Wang B,
Yang M,
Mao G,
Xiao F,
Deng GJ.
Org. Lett. 2022; 24: 8271
5a
Yamamoto H,
Momiyama N.
Chem. Commun. 2005; 28: 3514
5b
Momiyama N,
Yamamoto H.
J. Am. Chem. Soc. 2005; 127: 1080
5c
Yanagisawa A,
Kasahara S,
Takeishi A,
Marui T.
Synlett 2022; 33: 2019
Umpolung approach using strong base:
6a
Reeves JT,
Lorenc C,
Camara K,
Li Z,
Lee H,
Busacca CA,
Senanayake CH.
J. Org. Chem. 2014; 79: 5895
6b
Garrett MR,
Tarr JC,
Johnson JS.
J. Am. Chem. Soc. 2007; 129: 12944
For selected example of radical addition reaction of nitrone under photoredox catalysis, see:
7a
Supranovich VI,
Levin VV,
Struchkova MI,
Dilman AD.
Org. Lett. 2018; 20: 840
7b
Li HH,
Li JQ,
Zheng X,
Huang PQ.
Org. Lett. 2021; 23: 876
8 For a review on nitrone, see:
Murahashi S.-I,
Imada Y.
Chem. Rev. 2019; 119: 4684
9 During preparation of the manuscript, Paxaio and co-workers recently reported carbamoylation of nitrone under photoredox catalysis. See: Oliveira P. H. R., Tordato E. A., Vélez J. A. C., Carneiro P. S., Paixão M. W.; J. Org. Chem. ; 2022 , in press; DOI: 10.1021/acs.joc.2c02266
10a
Zhu C,
Akiyama T.
Org. Lett. 2009; 11: 4180
10b
Zhu C,
Saito K,
Yamanaka M,
Akiyama T.
Acc. Chem. Res. 2015; 48: 388
11a
Uchikura T,
Toda M,
Mouri T,
Fujii T,
Moriyama K,
Ibanez I,
Akiyama T.
J. Org. Chem. 2020; 85: 12715
11b
Uchikura T,
Kamiyama N,
Mouri T,
Akiyama T.
ACS Catal. 2022; 12: 5209
11c
Uchikura T,
Moriyama K,
Toda M,
Mouri T,
Ibanez I,
Akiyama T.
Chem. Commun. 2019; 55: 11171
Other groups also reported acylation reactions using 2-acylthiazoline as a radical precursor, see:
12a
Li L,
Guo S,
Wang Q,
Zhu J.
Org. Lett. 2019; 21: 5462
12b
He X.-K,
Lu J,
Ye H.-B,
Li L,
Xuan J.
Molecules 2021; 26: 6843
Photorearrangement reaction of nitrone:
13a
Zhang Y,
Blackman ML,
Leduc AB,
Jamison TF.
Angew. Chem. Int. Ed. 2013; 52: 4251
13b
Lipczynska-Kochany E,
Kochany J.
J. Photochem. Photobiol., A 1988; 45: 65
13c
Koyano K,
Suzuki H,
Mori Y,
Tanaka I.
Bull. Chem. Soc. Jpn. 1970; 43: 3582
13d
Splitter JS,
Su T.-M,
Ono H,
Calvin M.
J. Am. Chem. Soc. 1971; 93: 4075
14
Example Synthetic Procedure Sequentially, nitrone 1a (0.050 mmol), benzothiazoline 2a (0.10 mmol), 4CzIPN (1 mol%), and acetonitrile (1 mL, 0.05 M) were added to a dried 20 mL test tube containing a stirrer bar. The mixture was subjected to freeze-pump-thaw process (3 cycles) and back-filled with N2 . The reaction was irradiated with white LED at rt for 14 h. After being exposed to air, the reaction mixture was concentrated and purified by preparative thin-layer chromatography on silica gel (hexane/ethyl acetate, 5:1 v/v) to give the corresponding α-hydroxyamino ketone 3a in 73% yield as a white solid. Spectral Information for Compound 3a
1 H NMR (400 MHz, CDCl3 ): δ = 8.87 (dd, J = 1.3, 8.5 Hz, 2 H), 7.60 (tt, J = 0.9, 7.6 Hz, 1 H), 7.46 (dd, J = 7.7, 8.1 Hz, 2 H), 7.33–7.22 (m, 5 H), 6.08 (br s, 1 H), 4.21 (d, J = 9.0 Hz, 1 H), 4.13 (d, J = 13.4 Hz, 1 H), 3.85 (d, J = 13.4 Hz, 1 H), 2.48–2.33 (m, 1 H), 1.17 (d, J = 6.6 Hz, 3 H), 0.87 (d, J = 6.8 Hz, 3 H) ppm. 13 C NMR (100 MHz, CDCl3 ): δ = 205.7, 138.4, 137.5, 133.6, 129.0, 128.7, 128.4, 128.3, 127.3, 71.6, 61.2, 29.4, 20.3, 19.8 ppm. HRMS (ESI): m/z calcd for C18 H21 NO2 Na: 306.1470; found: 306.1470.
For selected examples of an acylation reaction using 1,4-dihydropyridine derivatives as a radical precursor, see:
15a
Goti G,
Bieszczad B,
Vega-Penaloza A,
Melchiorre P.
Angew. Chem. Int. Ed. 2019; 58: 1213
15b
Zhao X,
Li B,
Xia W.
Org. Lett. 2020; 22: 1056