Subscribe to RSS
DOI: 10.1055/a-2059-3003
Metal- and Additive-Free Synthesis of α-Hydroxyamino Ketones Enabled by Organophotocatalyst
The authors acknowledge a Grant-in Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS, Grant Number JP20H00380).
![](https://www.thieme-connect.de/media/synlett/202312/lookinside/thumbnails/st-2023-k0057-c_10-1055_a-2059-3003-1.jpg)
Dedicated to Professor Masahiro Murakami on the occasion of his retirement from Kyoto University
Abstract
We report herein a straightforward method for the synthesis of α-hydroxyamino ketones, which involves the benzoylation reaction of nitrones with 2-benzoyl-2-phenylbenzothiazoline under organophotocatalysis. This method offers access to a variety α-hydroxyamino ketones without the use of any transition-metal catalyst or base. Control experiments suggested that the reaction proceeded through a benzoyl radical addition to nitrone. Benzothiazoline was found to be a more suitable radical precursor than Hantzsch ester.
Key words
hydroxyamino ketone - hydroxylamine - nitrone - benzothiazoline - organophotocatalyst - metal-freeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2059-3003.
- Supporting Information
Publication History
Received: 09 February 2023
Accepted after revision: 21 March 2023
Accepted Manuscript online:
21 March 2023
Article published online:
14 April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Judd TC, Williams RM. Angew. Chem. Int. Ed. 2002; 41: 4683
- 1b Bugg T. ChemBioChem 2014; 15: 2467
- 1c Lambert KM, Cox JB, Liu L, Jackson AC, Yruegas S, Wiberg KB, Wood JL. Angew. Chem. Int. Ed. 2002; 41: 4686
- 2a Hill J, Hettikankanamalage AA, Crich D. J. Am. Chem. Soc. 2020; 142: 14820
- 2b Hill J, Crich D. ACS Med. Chem. Lett. 2022; 13: 799
- 3a Niu D, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 9716
- 3b Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
- 4a Svejstrup TD, Ruffoni A, Julia F, Aubert VM, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 14948
- 4b Chen J, Xu Y, Shao W, Ji J, Wang B, Yang M, Mao G, Xiao F, Deng GJ. Org. Lett. 2022; 24: 8271
- 5a Yamamoto H, Momiyama N. Chem. Commun. 2005; 28: 3514
- 5b Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2005; 127: 1080
- 5c Yanagisawa A, Kasahara S, Takeishi A, Marui T. Synlett 2022; 33: 2019
- 6a Reeves JT, Lorenc C, Camara K, Li Z, Lee H, Busacca CA, Senanayake CH. J. Org. Chem. 2014; 79: 5895
- 6b Garrett MR, Tarr JC, Johnson JS. J. Am. Chem. Soc. 2007; 129: 12944
- 7a Supranovich VI, Levin VV, Struchkova MI, Dilman AD. Org. Lett. 2018; 20: 840
- 7b Li HH, Li JQ, Zheng X, Huang PQ. Org. Lett. 2021; 23: 876
- 8 For a review on nitrone, see: Murahashi S.-I, Imada Y. Chem. Rev. 2019; 119: 4684
- 9 During preparation of the manuscript, Paxaio and co-workers recently reported carbamoylation of nitrone under photoredox catalysis. See: Oliveira P. H. R., Tordato E. A., Vélez J. A. C., Carneiro P. S., Paixão M. W.; J. Org. Chem.; 2022, in press; DOI: 10.1021/acs.joc.2c02266
- 10a Zhu C, Akiyama T. Org. Lett. 2009; 11: 4180
- 10b Zhu C, Saito K, Yamanaka M, Akiyama T. Acc. Chem. Res. 2015; 48: 388
- 11a Uchikura T, Toda M, Mouri T, Fujii T, Moriyama K, Ibanez I, Akiyama T. J. Org. Chem. 2020; 85: 12715
- 11b Uchikura T, Kamiyama N, Mouri T, Akiyama T. ACS Catal. 2022; 12: 5209
- 11c Uchikura T, Moriyama K, Toda M, Mouri T, Ibanez I, Akiyama T. Chem. Commun. 2019; 55: 11171
- 12a Li L, Guo S, Wang Q, Zhu J. Org. Lett. 2019; 21: 5462
- 12b He X.-K, Lu J, Ye H.-B, Li L, Xuan J. Molecules 2021; 26: 6843
- 13a Zhang Y, Blackman ML, Leduc AB, Jamison TF. Angew. Chem. Int. Ed. 2013; 52: 4251
- 13b Lipczynska-Kochany E, Kochany J. J. Photochem. Photobiol., A 1988; 45: 65
- 13c Koyano K, Suzuki H, Mori Y, Tanaka I. Bull. Chem. Soc. Jpn. 1970; 43: 3582
- 13d Splitter JS, Su T.-M, Ono H, Calvin M. J. Am. Chem. Soc. 1971; 93: 4075
- 14 Example Synthetic ProcedureSequentially, nitrone 1a (0.050 mmol), benzothiazoline 2a (0.10 mmol), 4CzIPN (1 mol%), and acetonitrile (1 mL, 0.05 M) were added to a dried 20 mL test tube containing a stirrer bar. The mixture was subjected to freeze-pump-thaw process (3 cycles) and back-filled with N2. The reaction was irradiated with white LED at rt for 14 h. After being exposed to air, the reaction mixture was concentrated and purified by preparative thin-layer chromatography on silica gel (hexane/ethyl acetate, 5:1 v/v) to give the corresponding α-hydroxyamino ketone 3a in 73% yield as a white solid. Spectral Information for Compound 3a 1H NMR (400 MHz, CDCl3): δ = 8.87 (dd, J = 1.3, 8.5 Hz, 2 H), 7.60 (tt, J = 0.9, 7.6 Hz, 1 H), 7.46 (dd, J = 7.7, 8.1 Hz, 2 H), 7.33–7.22 (m, 5 H), 6.08 (br s, 1 H), 4.21 (d, J = 9.0 Hz, 1 H), 4.13 (d, J = 13.4 Hz, 1 H), 3.85 (d, J = 13.4 Hz, 1 H), 2.48–2.33 (m, 1 H), 1.17 (d, J = 6.6 Hz, 3 H), 0.87 (d, J = 6.8 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 205.7, 138.4, 137.5, 133.6, 129.0, 128.7, 128.4, 128.3, 127.3, 71.6, 61.2, 29.4, 20.3, 19.8 ppm. HRMS (ESI): m/z calcd for C18H21NO2Na: 306.1470; found: 306.1470.
For selected exaples, see:
Umpolung approach using strong base:
For selected example of radical addition reaction of nitrone under photoredox catalysis, see:
Other groups also reported acylation reactions using 2-acylthiazoline as a radical precursor, see:
Photorearrangement reaction of nitrone: