Synlett 2023; 34(12): 1391-1394
DOI: 10.1055/a-2059-3003
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Metal- and Additive-Free Synthesis of α-Hydroxyamino Ketones Enabled by Organophotocatalyst

,
Tadachika Matsudaira
,
The authors acknowledge a Grant-in Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS, Grant Number JP20H00380).


Dedicated to Professor Masahiro Murakami on the occasion of his retirement from Kyoto University

Abstract

We report herein a straightforward method for the synthesis of α-hydroxyamino ketones, which involves the benzoylation reaction of nitrones with 2-benzoyl-2-phenylbenzothiazoline under organophotocatalysis. This method offers access to a variety α-hydroxyamino ketones without the use of any transition-metal catalyst or base. Control experiments suggested that the reaction proceeded through a benzoyl radical addition to nitrone. Benzothiazoline was found to be a more suitable radical precursor than Hantzsch ester.

Supporting Information



Publication History

Received: 09 February 2023

Accepted after revision: 21 March 2023

Accepted Manuscript online:
21 March 2023

Article published online:
14 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Judd TC, Williams RM. Angew. Chem. Int. Ed. 2002; 41: 4683
    • 1b Bugg T. ChemBioChem 2014; 15: 2467
    • 1c Lambert KM, Cox JB, Liu L, Jackson AC, Yruegas S, Wiberg KB, Wood JL. Angew. Chem. Int. Ed. 2002; 41: 4686
    • 2a Hill J, Hettikankanamalage AA, Crich D. J. Am. Chem. Soc. 2020; 142: 14820
    • 2b Hill J, Crich D. ACS Med. Chem. Lett. 2022; 13: 799

      For selected exaples, see:
    • 3a Niu D, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 9716
    • 3b Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
    • 4a Svejstrup TD, Ruffoni A, Julia F, Aubert VM, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 14948
    • 4b Chen J, Xu Y, Shao W, Ji J, Wang B, Yang M, Mao G, Xiao F, Deng GJ. Org. Lett. 2022; 24: 8271

      Umpolung approach using strong base:
    • 6a Reeves JT, Lorenc C, Camara K, Li Z, Lee H, Busacca CA, Senanayake CH. J. Org. Chem. 2014; 79: 5895
    • 6b Garrett MR, Tarr JC, Johnson JS. J. Am. Chem. Soc. 2007; 129: 12944

      For selected example of radical addition reaction of nitrone under photoredox catalysis, see:
    • 7a Supranovich VI, Levin VV, Struchkova MI, Dilman AD. Org. Lett. 2018; 20: 840
    • 7b Li HH, Li JQ, Zheng X, Huang PQ. Org. Lett. 2021; 23: 876
  • 8 For a review on nitrone, see: Murahashi S.-I, Imada Y. Chem. Rev. 2019; 119: 4684
  • 9 During preparation of the manuscript, Paxaio and co-workers recently reported carbamoylation of nitrone under photoredox catalysis. See: Oliveira P. H. R., Tordato E. A., Vélez J. A. C., Carneiro P. S., Paixão M. W.; J. Org. Chem.; 2022, in press; DOI: 10.1021/acs.joc.2c02266
    • 10a Zhu C, Akiyama T. Org. Lett. 2009; 11: 4180
    • 10b Zhu C, Saito K, Yamanaka M, Akiyama T. Acc. Chem. Res. 2015; 48: 388
    • 11a Uchikura T, Toda M, Mouri T, Fujii T, Moriyama K, Ibanez I, Akiyama T. J. Org. Chem. 2020; 85: 12715
    • 11b Uchikura T, Kamiyama N, Mouri T, Akiyama T. ACS Catal. 2022; 12: 5209
    • 11c Uchikura T, Moriyama K, Toda M, Mouri T, Ibanez I, Akiyama T. Chem. Commun. 2019; 55: 11171

      Other groups also reported acylation reactions using 2-acylthiazoline as a radical precursor, see:
    • 12a Li L, Guo S, Wang Q, Zhu J. Org. Lett. 2019; 21: 5462
    • 12b He X.-K, Lu J, Ye H.-B, Li L, Xuan J. Molecules 2021; 26: 6843

      Photorearrangement reaction of nitrone:
    • 13a Zhang Y, Blackman ML, Leduc AB, Jamison TF. Angew. Chem. Int. Ed. 2013; 52: 4251
    • 13b Lipczynska-Kochany E, Kochany J. J. Photochem. Photobiol., A 1988; 45: 65
    • 13c Koyano K, Suzuki H, Mori Y, Tanaka I. Bull. Chem. Soc. Jpn. 1970; 43: 3582
    • 13d Splitter JS, Su T.-M, Ono H, Calvin M. J. Am. Chem. Soc. 1971; 93: 4075
  • 14 Example Synthetic ProcedureSequentially, nitrone 1a (0.050 mmol), benzothiazoline 2a (0.10 mmol), 4CzIPN (1 mol%), and acetonitrile (1 mL, 0.05 M) were added to a dried 20 mL test tube containing a stirrer bar. The mixture was subjected to freeze-pump-thaw process (3 cycles) and back-filled with N2. The reaction was irradiated with white LED at rt for 14 h. After being exposed to air, the reaction mixture was concentrated and purified by preparative thin-layer chromatography on silica gel (hexane/ethyl acetate, 5:1 v/v) to give the corresponding α-hydroxyamino ketone 3a in 73% yield as a white solid. Spectral Information for Compound 3a 1H NMR (400 MHz, CDCl3): δ = 8.87 (dd, J = 1.3, 8.5 Hz, 2 H), 7.60 (tt, J = 0.9, 7.6 Hz, 1 H), 7.46 (dd, J = 7.7, 8.1 Hz, 2 H), 7.33–7.22 (m, 5 H), 6.08 (br s, 1 H), 4.21 (d, J = 9.0 Hz, 1 H), 4.13 (d, J = 13.4 Hz, 1 H), 3.85 (d, J = 13.4 Hz, 1 H), 2.48–2.33 (m, 1 H), 1.17 (d, J = 6.6 Hz, 3 H), 0.87 (d, J = 6.8 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 205.7, 138.4, 137.5, 133.6, 129.0, 128.7, 128.4, 128.3, 127.3, 71.6, 61.2, 29.4, 20.3, 19.8 ppm. HRMS (ESI): m/z calcd for C18H21NO2Na: 306.1470; found: 306.1470.

    • For selected examples of an acylation reaction using 1,4-dihydropyridine derivatives as a radical precursor, see:
    • 15a Goti G, Bieszczad B, Vega-Penaloza A, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 1213
    • 15b Zhao X, Li B, Xia W. Org. Lett. 2020; 22: 1056