Subscribe to RSS
DOI: 10.1055/a-2059-3003
Metal- and Additive-Free Synthesis of α-Hydroxyamino Ketones Enabled by Organophotocatalyst
The authors acknowledge a Grant-in Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS, Grant Number JP20H00380).
Dedicated to Professor Masahiro Murakami on the occasion of his retirement from Kyoto University
Abstract
We report herein a straightforward method for the synthesis of α-hydroxyamino ketones, which involves the benzoylation reaction of nitrones with 2-benzoyl-2-phenylbenzothiazoline under organophotocatalysis. This method offers access to a variety α-hydroxyamino ketones without the use of any transition-metal catalyst or base. Control experiments suggested that the reaction proceeded through a benzoyl radical addition to nitrone. Benzothiazoline was found to be a more suitable radical precursor than Hantzsch ester.
Key words
hydroxyamino ketone - hydroxylamine - nitrone - benzothiazoline - organophotocatalyst - metal-freeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2059-3003.
- Supporting Information
Publication History
Received: 09 February 2023
Accepted after revision: 21 March 2023
Accepted Manuscript online:
21 March 2023
Article published online:
14 April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Judd TC, Williams RM. Angew. Chem. Int. Ed. 2002; 41: 4683
- 1b Bugg T. ChemBioChem 2014; 15: 2467
- 1c Lambert KM, Cox JB, Liu L, Jackson AC, Yruegas S, Wiberg KB, Wood JL. Angew. Chem. Int. Ed. 2002; 41: 4686
- 2a Hill J, Hettikankanamalage AA, Crich D. J. Am. Chem. Soc. 2020; 142: 14820
- 2b Hill J, Crich D. ACS Med. Chem. Lett. 2022; 13: 799
- 3a Niu D, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 9716
- 3b Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
- 4a Svejstrup TD, Ruffoni A, Julia F, Aubert VM, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 14948
- 4b Chen J, Xu Y, Shao W, Ji J, Wang B, Yang M, Mao G, Xiao F, Deng GJ. Org. Lett. 2022; 24: 8271
- 5a Yamamoto H, Momiyama N. Chem. Commun. 2005; 28: 3514
- 5b Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2005; 127: 1080
- 5c Yanagisawa A, Kasahara S, Takeishi A, Marui T. Synlett 2022; 33: 2019
- 6a Reeves JT, Lorenc C, Camara K, Li Z, Lee H, Busacca CA, Senanayake CH. J. Org. Chem. 2014; 79: 5895
- 6b Garrett MR, Tarr JC, Johnson JS. J. Am. Chem. Soc. 2007; 129: 12944
- 7a Supranovich VI, Levin VV, Struchkova MI, Dilman AD. Org. Lett. 2018; 20: 840
- 7b Li HH, Li JQ, Zheng X, Huang PQ. Org. Lett. 2021; 23: 876
- 8 For a review on nitrone, see: Murahashi S.-I, Imada Y. Chem. Rev. 2019; 119: 4684
- 9 During preparation of the manuscript, Paxaio and co-workers recently reported carbamoylation of nitrone under photoredox catalysis. See: Oliveira P. H. R., Tordato E. A., Vélez J. A. C., Carneiro P. S., Paixão M. W.; J. Org. Chem.; 2022, in press; DOI: 10.1021/acs.joc.2c02266
- 10a Zhu C, Akiyama T. Org. Lett. 2009; 11: 4180
- 10b Zhu C, Saito K, Yamanaka M, Akiyama T. Acc. Chem. Res. 2015; 48: 388
- 11a Uchikura T, Toda M, Mouri T, Fujii T, Moriyama K, Ibanez I, Akiyama T. J. Org. Chem. 2020; 85: 12715
- 11b Uchikura T, Kamiyama N, Mouri T, Akiyama T. ACS Catal. 2022; 12: 5209
- 11c Uchikura T, Moriyama K, Toda M, Mouri T, Ibanez I, Akiyama T. Chem. Commun. 2019; 55: 11171
- 12a Li L, Guo S, Wang Q, Zhu J. Org. Lett. 2019; 21: 5462
- 12b He X.-K, Lu J, Ye H.-B, Li L, Xuan J. Molecules 2021; 26: 6843
- 13a Zhang Y, Blackman ML, Leduc AB, Jamison TF. Angew. Chem. Int. Ed. 2013; 52: 4251
- 13b Lipczynska-Kochany E, Kochany J. J. Photochem. Photobiol., A 1988; 45: 65
- 13c Koyano K, Suzuki H, Mori Y, Tanaka I. Bull. Chem. Soc. Jpn. 1970; 43: 3582
- 13d Splitter JS, Su T.-M, Ono H, Calvin M. J. Am. Chem. Soc. 1971; 93: 4075
- 14 Example Synthetic ProcedureSequentially, nitrone 1a (0.050 mmol), benzothiazoline 2a (0.10 mmol), 4CzIPN (1 mol%), and acetonitrile (1 mL, 0.05 M) were added to a dried 20 mL test tube containing a stirrer bar. The mixture was subjected to freeze-pump-thaw process (3 cycles) and back-filled with N2. The reaction was irradiated with white LED at rt for 14 h. After being exposed to air, the reaction mixture was concentrated and purified by preparative thin-layer chromatography on silica gel (hexane/ethyl acetate, 5:1 v/v) to give the corresponding α-hydroxyamino ketone 3a in 73% yield as a white solid. Spectral Information for Compound 3a 1H NMR (400 MHz, CDCl3): δ = 8.87 (dd, J = 1.3, 8.5 Hz, 2 H), 7.60 (tt, J = 0.9, 7.6 Hz, 1 H), 7.46 (dd, J = 7.7, 8.1 Hz, 2 H), 7.33–7.22 (m, 5 H), 6.08 (br s, 1 H), 4.21 (d, J = 9.0 Hz, 1 H), 4.13 (d, J = 13.4 Hz, 1 H), 3.85 (d, J = 13.4 Hz, 1 H), 2.48–2.33 (m, 1 H), 1.17 (d, J = 6.6 Hz, 3 H), 0.87 (d, J = 6.8 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 205.7, 138.4, 137.5, 133.6, 129.0, 128.7, 128.4, 128.3, 127.3, 71.6, 61.2, 29.4, 20.3, 19.8 ppm. HRMS (ESI): m/z calcd for C18H21NO2Na: 306.1470; found: 306.1470.
For selected exaples, see:
Umpolung approach using strong base:
For selected example of radical addition reaction of nitrone under photoredox catalysis, see:
Other groups also reported acylation reactions using 2-acylthiazoline as a radical precursor, see:
Photorearrangement reaction of nitrone: