Synlett
DOI: 10.1055/a-2342-8284
synpacts

Photoredox- and Cobalt-Cocatalyzed Dehydrogenative Ring-Opening/Functionalization of Monodonor Cyclopropanes

Jiyao Zhang
,
Haohao Huang
,
Zhijun Zuo
We thank Shaanxi Fundamental Science Research Project for Chemistry & Biology (22JHQ001) and start-up funding of Northwest University.


Abstract

Catalytic ring-opening/functionalization of unactive cyclopropanes has proven to be a significant but challenging task in organic synthesis. Herein, we disclose the photoredox and cobalt cocatalyzed ring-opening/acceptorless dehydrogenative functionalization of monodonor cyclopropanes, which provides a promising platform to achieve a sustainable and atom-economic approach to assemble allylic N-acyl-acetal derivatives. The reaction features mild conditions, broad substrate scopes, and excellent functional group compatibilities. The optimized conditions accommodate various cycloalkylamides and primary, secondary, and tertiary alcohols, with applications in late-stage functionalization of pharmaceutically relevant compounds, stimulating the further utility in medicinal chemistry. Selective nucleophilic substitutions and further transformations of desired products with various carbon nucleophiles were succeed in a one-pot fashion, thus offering diverse acyclic or cyclic derivatives.

1 Introduction

2 Cooperative Photoredox and Cobalt-Catalyzed Dehydrogenative Functionalization of Allylic N-Acyl-acetal Derivatives

3 Mechanistic Study

4 Preliminary Studies of Asymmetric Transformation

5 Conclusion and Perspectives



Publication History

Received: 31 May 2024

Accepted after revision: 11 June 2024

Accepted Manuscript online:
11 June 2024

Article published online:
25 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For books, see:
    • 1a Cleavage of Carbon-carbon Single Bonds by Transition Metal. Murakami M, Chatani N. Wiley-VCH; Weinheim: 2016
    • 1b C–C Bond Activation, In Topics in Current Chemistry, Vol. 346 . Dong G., Springer; Berlin/Heidelberg: 2014. For selected reviews, see
    • 1c Jun C.-H. Chem. Soc. Rev. 2004; 33: 610
    • 1d Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 1e Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
    • 2a de Meijere A. Angew. Chem., Int. Ed. Engl. 1979; 18: 809
    • 2b Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3501
    • 2c Fumagali G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
    • 2d Harmata AS, Roldan BJ, Stephenson CR. J. Angew. Chem. Int. Ed. 2023; 62: e202213003
    • 3a Leduc AB, Kerr MA. Angew. Chem. Int. Ed. 2008; 47: 7945
    • 3b Parsons AT, Johnson JS. J. Am. Chem. Soc. 2009; 131: 3122
    • 3c de Nanteuil F, Waser J. Angew. Chem. Int. Ed. 2011; 50: 12075
    • 3d Zhou Y, Wang L, Li J, Sun X, Tang Y. J. Am. Chem. Soc. 2012; 134: 9066
    • 3e Das S, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2017; 56: 11554
    • 4a Parsons AT, Campbell MJ, Johnson JS. Org. Lett. 2008; 10: 2541
    • 4b Tombe R, Kurahashi T, Matsubara S. Org. Lett. 2013; 15: 1791
    • 4c Trost BM, Zuo Z. Angew. Chem. Int. Ed. 2021; 60: 5806
    • 5a Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 15928
    • 5b Kolb S, Ahlburg NL, Werz DB. Org. Lett. 2021; 23: 5549
    • 6a Lu Z, Shen M, Yoon TP. J. Am. Chem. Soc. 2011; 133: 1162
    • 6b Nguyen TV. T, Bossonnet A, Wodrich MD, Waser J. J. Am. Chem. Soc. 2023; 145: 25411
    • 7a Yang S, Wang L, Zhang H, Liu C, Zhang L, Wang X, Zhang G, Li Y, Zhang Q. ACS Catal. 2019; 9: 716
    • 7b Wang M, Waser J. Angew. Chem. Int. Ed. 2020; 59: 16420
    • 7c Wang M, Nguyen TV. T, Waser J. J. Am. Chem. Soc. 2021; 143: 11969
    • 8a Maity S, Zhu M, Shinabery RS, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 222
    • 8b Lu Z, Parrish JD, Yoon TP. Tetrahedron 2014; 70: 4270
    • 8c Ge L, Zhang C, Pan C, Wang X, Liu D, Li Z, Shen P, Tian L, Feng C. Nat. Commun. 2019; 10: 4367
    • 8d Zuo Z, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2021; 60: 25252
    • 8e Liu Z, Wu S, Chen Y. ACS Catal. 2021; 11: 10565
    • 9a Peng P, Yan X, Zhang K, Liu Z, Zeng L, Chen Y, Zhang H, Lei A. Nat. Commun. 2021; 13: 3075
    • 9b Wang Q, Wang Q, Zhang Y, Mohamed YM, Pacheco C, Zheng N, Zare RN, Chen H. Chem. Sci. 2021; 12: 969
    • 9c Huang X, Cai J, Zheng Y, Song C, Li J. Adv. Synth. Catal. 2023; 336: 201
    • 10a Murai M, Nishiyama A, Nishinaka N, Morita H, Takai K. Chem. Commun. 2017; 53: 9281
    • 10b Wang D, Xue X, Houk KN, Shi Z. Angew. Chem. Int. Ed. 2018; 57: 16861
    • 10c Richmond E, Yi J, Vuković VD, Sajadi F, Rowley CN, Moran J. Chem. Sci. 2018; 9: 6411
    • 10d Roy A, Bonetti V, Wang G, Wu Q, Klare HF. T, Oestreich M. Org. Lett. 2020; 22: 1213
    • 10e Gieuw MH, Chen S, Ke Z, Houk KN, Yeung Y.-Y. Chem. Sci. 2020; 11: 9426
    • 11a Morton JG. M, Dureen MA, Stephan DW. Chem. Commun. 2010; 46: 8947
    • 11b Zhang Z, Liu Z, Guo R, Zhao Y, Li X, Wang X. Angew. Chem. Int. Ed. 2017; 56: 4028
    • 11c Zhang Z, Ren J, Zhang M, Xu X, Wang X. Chin. J. Chem. 2021; 39: 1641
  • 12 Cartwright KC, Davies AM, Tunge JA. Eur. J. Org. Chem. 2019; 1245
    • 13a Meng Q, Zhong J, Liu Q, Gao X, Zhang H, Lei T, Li Z, Feng K, Chen B, Tung C, Wu L. J. Am. Chem. Soc. 2013; 135: 19052
    • 13b Zhong J, Meng Q, Liu B, Li X, Gao X, Lei T, Wu C, Li Z, Tung C, Wu L. Org. Lett. 2014; 16: 1988
    • 13c Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J.-X, Wu L.-Z, Lei A. J. Am. Chem. Soc. 2015; 137: 9273
    • 13d Cao H, Jiang H, Feng H, Kwan JM. C, Liu XWu J. J. Am. Chem. Soc. 2018; 140: 16360
    • 13e Cartwright KC, Tunge JA. ACS Catal. 2018; 8: 11801
    • 13f Dighe SU, Juliá F, Luridiana A, Douglas JJ, Leonori D. Nature 2020; 584: 75
    • 14a Li M, Luo B, Liu Q, Hu Y, Ganesan A, Huang P, Wen S. Org. Lett. 2014; 16: 10
    • 14b Ranjith J, Krishna PR. Tetrahedron Lett. 2019; 60: 1437
    • 15a Simth AB, Safonov IG, Corbett RM. J. Am. Chem. Soc. 2001; 123: 12426
    • 15b Cichewicz RH, Valeriote FA, Crews P. Org. Lett. 2004; 6: 1951
    • 15c Tammam MA, El-Demerdash A. Curr. Opin. Biotech. 2023; 6: 100145
  • 16 Grimm ML, Suleman NK, Hancock AN, Spencer JN, Dudding T, Rowshanpour R, Castagnoli NJr, Tanko JM. J. Am. Chem. Soc. 2020; 142: 2640
  • 17 Liu Z, Wu S, Chen Y. ACS Catal. 2021; 11: 10565
    • 18a Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
    • 18b Buzzetti L, Crisenza GE, Melchiorre MP. Angew. Chem. Int. Ed. 2018; 58: 3730
    • 19a Maity S, Zhu M, Shinabery RS, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 222
    • 19b Nguyen TH, Morris SA, Zheng N. Adv. Synth. Catal. 2014; 356: 2831
    • 19c Wang Q, Zhang N. Org. Lett. 2019; 21: 9999
    • 20a Muriel B, Gagnebin A, Waser J. Chem. Sci. 2019; 10: 10716
    • 20b Wang M, Jeon S, Waser J. Org. Lett. 2020; 22: 9123
    • 20c Wang M, Nguyen TV. T, Waser J. J. Am. Chem. Soc. 2021; 143: 11969
  • 21 Wang M, Waser J. Angew. Chem. Int. Ed. 2019; 58: 13880