Synlett 2025; 36(03): 191-198 DOI: 10.1055/a-2342-8284
Photoredox- and Cobalt-Cocatalyzed Dehydrogenative Ring-Opening/Functionalization of Monodonor Cyclopropanes
Jiyao Zhang
,
Haohao Huang
,
We thank Shaanxi Fundamental Science Research Project for Chemistry & Biology (22JHQ001) and start-up funding of Northwest University.
Abstract
Catalytic ring-opening/functionalization of unactive cyclopropanes has proven to be a significant but challenging task in organic synthesis. Herein, we disclose the photoredox and cobalt cocatalyzed ring-opening/acceptorless dehydrogenative functionalization of monodonor cyclopropanes, which provides a promising platform to achieve a sustainable and atom-economic approach to assemble allylic N -acyl-acetal derivatives. The reaction features mild conditions, broad substrate scopes, and excellent functional group compatibilities. The optimized conditions accommodate various cycloalkylamides and primary, secondary, and tertiary alcohols, with applications in late-stage functionalization of pharmaceutically relevant compounds, stimulating the further utility in medicinal chemistry. Selective nucleophilic substitutions and further transformations of desired products with various carbon nucleophiles were succeed in a one-pot fashion, thus offering diverse acyclic or cyclic derivatives.
1 Introduction
2 Cooperative Photoredox and Cobalt-Catalyzed Dehydrogenative Functionalization of Allylic N -Acyl-acetal Derivatives
3 Mechanistic Study
4 Preliminary Studies of Asymmetric Transformation
5 Conclusion and Perspectives
Key words
photoredox catalysis -
cobaloxime catalysis -
cyclopropane -
ring opening -
N ,
O -acetal
Publication History
Received: 31 May 2024
Accepted after revision: 11 June 2024
Accepted Manuscript online: 11 June 2024
Article published online: 25 June 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
For books, see:
1a Cleavage of Carbon-carbon Single Bonds by Transition Metal.
Murakami M,
Chatani N.
Wiley-VCH; Weinheim: 2016
1b
C–C Bond Activation, In Topics in Current Chemistry , Vol. 346
. Dong G., Springer; Berlin/Heidelberg: 2014. For selected reviews, see
1c
Jun C.-H.
Chem. Soc. Rev. 2004; 33: 610
1d
Chen F,
Wang T,
Jiao N.
Chem. Rev. 2014; 114: 8613
1e
Souillart L,
Cramer N.
Chem. Rev. 2015; 115: 9410
2a
de Meijere A.
Angew. Chem., Int. Ed. Engl. 1979; 18: 809
2b
Carson CA,
Kerr MA.
Chem. Soc. Rev. 2009; 38: 3501
2c
Fumagali G,
Stanton S,
Bower JF.
Chem. Rev. 2017; 117: 9404
2d
Harmata AS,
Roldan BJ,
Stephenson CR. J.
Angew. Chem. Int. Ed. 2023; 62: e202213003
3a
Leduc AB,
Kerr MA.
Angew. Chem. Int. Ed. 2008; 47: 7945
3b
Parsons AT,
Johnson JS.
J. Am. Chem. Soc. 2009; 131: 3122
3c
de Nanteuil F,
Waser J.
Angew. Chem. Int. Ed. 2011; 50: 12075
3d
Zhou Y,
Wang L,
Li J,
Sun X,
Tang Y.
J. Am. Chem. Soc. 2012; 134: 9066
3e
Das S,
Daniliuc CG,
Studer A.
Angew. Chem. Int. Ed. 2017; 56: 11554
4a
Parsons AT,
Campbell MJ,
Johnson JS.
Org. Lett. 2008; 10: 2541
4b
Tombe R,
Kurahashi T,
Matsubara S.
Org. Lett. 2013; 15: 1791
4c
Trost BM,
Zuo Z.
Angew. Chem. Int. Ed. 2021; 60: 5806
5a
Kolb S,
Petzold M,
Brandt F,
Jones PG,
Jacob CR,
Werz DB.
Angew. Chem. Int. Ed. 2021; 60: 15928
5b
Kolb S,
Ahlburg NL,
Werz DB.
Org. Lett. 2021; 23: 5549
6a
Lu Z,
Shen M,
Yoon TP.
J. Am. Chem. Soc. 2011; 133: 1162
6b
Nguyen TV. T,
Bossonnet A,
Wodrich MD,
Waser J.
J. Am. Chem. Soc. 2023; 145: 25411
7a
Yang S,
Wang L,
Zhang H,
Liu C,
Zhang L,
Wang X,
Zhang G,
Li Y,
Zhang Q.
ACS Catal. 2019; 9: 716
7b
Wang M,
Waser J.
Angew. Chem. Int. Ed. 2020; 59: 16420
7c
Wang M,
Nguyen TV. T,
Waser J.
J. Am. Chem. Soc. 2021; 143: 11969
8a
Maity S,
Zhu M,
Shinabery RS,
Zheng N.
Angew. Chem. Int. Ed. 2012; 51: 222
8b
Lu Z,
Parrish JD,
Yoon TP.
Tetrahedron 2014; 70: 4270
8c
Ge L,
Zhang C,
Pan C,
Wang X,
Liu D,
Li Z,
Shen P,
Tian L,
Feng C.
Nat. Commun. 2019; 10: 4367
8d
Zuo Z,
Daniliuc CG,
Studer A.
Angew. Chem. Int. Ed. 2021; 60: 25252
8e
Liu Z,
Wu S,
Chen Y.
ACS Catal. 2021; 11: 10565
9a
Peng P,
Yan X,
Zhang K,
Liu Z,
Zeng L,
Chen Y,
Zhang H,
Lei A.
Nat. Commun. 2021; 13: 3075
9b
Wang Q,
Wang Q,
Zhang Y,
Mohamed YM,
Pacheco C,
Zheng N,
Zare RN,
Chen H.
Chem. Sci. 2021; 12: 969
9c
Huang X,
Cai J,
Zheng Y,
Song C,
Li J.
Adv. Synth. Catal. 2023; 336: 201
10a
Murai M,
Nishiyama A,
Nishinaka N,
Morita H,
Takai K.
Chem. Commun. 2017; 53: 9281
10b
Wang D,
Xue X,
Houk KN,
Shi Z.
Angew. Chem. Int. Ed. 2018; 57: 16861
10c
Richmond E,
Yi J,
Vuković VD,
Sajadi F,
Rowley CN,
Moran J.
Chem. Sci. 2018; 9: 6411
10d
Roy A,
Bonetti V,
Wang G,
Wu Q,
Klare HF. T,
Oestreich M.
Org. Lett. 2020; 22: 1213
10e
Gieuw MH,
Chen S,
Ke Z,
Houk KN,
Yeung Y.-Y.
Chem. Sci. 2020; 11: 9426
11a
Morton JG. M,
Dureen MA,
Stephan DW.
Chem. Commun. 2010; 46: 8947
11b
Zhang Z,
Liu Z,
Guo R,
Zhao Y,
Li X,
Wang X.
Angew. Chem. Int. Ed. 2017; 56: 4028
11c
Zhang Z,
Ren J,
Zhang M,
Xu X,
Wang X.
Chin. J. Chem. 2021; 39: 1641
12
Cartwright KC,
Davies AM,
Tunge JA.
Eur. J. Org. Chem. 2019; 1245
13a
Meng Q,
Zhong J,
Liu Q,
Gao X,
Zhang H,
Lei T,
Li Z,
Feng K,
Chen B,
Tung C,
Wu L.
J. Am. Chem. Soc. 2013; 135: 19052
13b
Zhong J,
Meng Q,
Liu B,
Li X,
Gao X,
Lei T,
Wu C,
Li Z,
Tung C,
Wu L.
Org. Lett. 2014; 16: 1988
13c
Zhang G,
Liu C,
Yi H,
Meng Q,
Bian C,
Chen H,
Jian J.-X,
Wu L.-Z,
Lei A.
J. Am. Chem. Soc. 2015; 137: 9273
13d
Cao H,
Jiang H,
Feng H,
Kwan JM. C,
Liu XWu J.
J. Am. Chem. Soc. 2018; 140: 16360
13e
Cartwright KC,
Tunge JA.
ACS Catal. 2018; 8: 11801
13f
Dighe SU,
Juliá F,
Luridiana A,
Douglas JJ,
Leonori D.
Nature 2020; 584: 75
14a
Li M,
Luo B,
Liu Q,
Hu Y,
Ganesan A,
Huang P,
Wen S.
Org. Lett. 2014; 16: 10
14b
Ranjith J,
Krishna PR.
Tetrahedron Lett. 2019; 60: 1437
15a
Simth AB,
Safonov IG,
Corbett RM.
J. Am. Chem. Soc. 2001; 123: 12426
15b
Cichewicz RH,
Valeriote FA,
Crews P.
Org. Lett. 2004; 6: 1951
15c
Tammam MA,
El-Demerdash A.
Curr. Opin. Biotech. 2023; 6: 100145
16
Grimm ML,
Suleman NK,
Hancock AN,
Spencer JN,
Dudding T,
Rowshanpour R,
Castagnoli NJr,
Tanko JM.
J. Am. Chem. Soc. 2020; 142: 2640
17
Liu Z,
Wu S,
Chen Y.
ACS Catal. 2021; 11: 10565
18a
Cismesia MA,
Yoon TP.
Chem. Sci. 2015; 6: 5426
18b
Buzzetti L,
Crisenza GE,
Melchiorre MP.
Angew. Chem. Int. Ed. 2018; 58: 3730
19a
Maity S,
Zhu M,
Shinabery RS,
Zheng N.
Angew. Chem. Int. Ed. 2012; 51: 222
19b
Nguyen TH,
Morris SA,
Zheng N.
Adv. Synth. Catal. 2014; 356: 2831
19c
Wang Q,
Zhang N.
Org. Lett. 2019; 21: 9999
20a
Muriel B,
Gagnebin A,
Waser J.
Chem. Sci. 2019; 10: 10716
20b
Wang M,
Jeon S,
Waser J.
Org. Lett. 2020; 22: 9123
20c
Wang M,
Nguyen TV. T,
Waser J.
J. Am. Chem. Soc. 2021; 143: 11969
21
Wang M,
Waser J.
Angew. Chem. Int. Ed. 2019; 58: 13880