Synlett
DOI: 10.1055/a-2351-4828
letter

Gram-Scale Synthesis of (±)-Tylophorine

Dattatraya P. Masal
a   Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
D. Srinivasa Reddy
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
c   Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
› Author Affiliations
D.P.M. thanks UGC, New Delhi, for the award of a research fellowship, and D.S.R. acknowledges DST-SERB for the J. C. Bose Fellowship (JCB/2021/000022/SSC). Publication no. IICT/Pubs./2024/124.


Abstract

We report a practical scalable synthesis of the natural product (±)-tylophorine by using an operationally simple protecting-group-free route from readily accessible starting materials. Synthesis of a cyclic N-acetyl diester compound through cyclization, followed by two key steps (decarboxylation and a Clemmensen reduction), provides access to the target molecule.

Supporting Information



Publication History

Received: 08 May 2024

Accepted after revision: 24 June 2024

Accepted Manuscript online:
24 June 2024

Article published online:
15 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Ratnagiriswaran AN, Venkatachalam K. Indian J. Med. Res. (1913–1988) 1935; 22: 433
    • 2a Nazar S, Hussain MA, Khan A, Muhammad G, Bukhari SN. A. Arabian J. Chem. 2020; 13: 6348
    • 2b Wen T, Wang Z, Meng X, Wu M, Li Y, Wu X, Zhao L, Wang P, Yin Z, Li-Ling J, Wang Q. ACS Med. Chem. Lett. 2014; 5: 1027
    • 3a Gao W, Bussom S, Grill SP, Gullen EA, Hu Y.-C, Huang X, Zhong S, Kaczmarek C, Gutierrez J, Francis S, Baker DC, Yu S, Cheng Y.-C. Bioorg. Med. Chem. Lett. 2007; 17: 4338
    • 3b Yang X, Shi Q, Liu Y.-N, Zhao G, Bastow KF, Lin J.-C, Yang S.-C, Yang P.-C, Lee K.-H. J. Med. Chem. 2009; 52: 5262
    • 3c Wang Z, Wang K, Cui M, Wang Q. Sci. China, Ser. B: Chem. 2009; 52: 1288
    • 3d Gao W, Lam W, Zhong S, Kaczmarek C, Baker DC, Cheng Y.-C. Cancer Res. 2004; 64: 678
    • 4a Gopalakrishnan C, Shankaranarayanan D, Kameswaran L, Natarajan S. Indian J. Med. Res. 1979; 69: 513
    • 4b Gopalakrishnan C, Shankaranarayanan D, Nazimudeen SK, Kameswaran L. Indian J. Med. Res. 1980; 71: 940
    • 4c Yang C.-W, Chuang T.-H, Wu P.-L, Huang W.-H, Lee S.-J. Biochem. Biophys. Res. Commun. 2007; 354: 942
    • 5a Ganguly T, Sainis KB. Phytomedicine 2001; 8: 348
    • 5b Yadav M, Dwivedi P, Singh P, Singh VK. Indian J. Plant Physiol. 2010; 15: 297
    • 6a Reddy BK, Balaji M, Reddy PU, Sailaja G, Vaidyanath K, Narasimha G. Afr. J. Biochem. Res. 2009; 3: 393
    • 6b Ranemma M, Nagendram E, Niranjan S, Reddy AN, Mohan C. Int. J. Curr. Microbiol. Appl. Sci. 2017; 6: 487
  • 7 Wang K, Su B, Wang Z, Wu M, Li Z, Hu Y, Fan Z, Mi N, Wang Q. J. Agric. Food Chem. 2010; 58: 2703
    • 8a Omran Z, Guise CP, Chen L, Rauch C, Abdalla AN, Abdullah O, Sindi IA, Fischer PM, Smaill JB, Patterson AV, Liu Y, Wang Q. Molecules 2021; 26: 3327
    • 8b Saraswati S, Kanaujia PK, Kumar S, Kumar R, Alhaider AA. Mol. Cancer 2013; 12: 82
    • 9a Mostafa EM, Musa A, Mohammed HA, Alzarea AI, Abdelgawad MA, Al-Sanea MM, Ismail A, Zafar A, Elmowafy M, Selim S, Khan RA. Plants 2023; 12: 1143
    • 9b Gururani R, Patel S, Yaduvanshi N, Dwivedi J, Paliwal S, Sharma S. J. Ethnopharmacol. 2020; 262: 113122
    • 9c Kour N, Gupta M. J. Plant Dev. Sci. 2015; 7: 869
    • 10a Wang Z, Ye F, Feng Y, Xiao W, Song H, Zhao L, Lu R, Huang B, Liu Y, Wang W, Li Y, Ding Y, Zheng Y, Song X, Tan W, Wang Q. ACS Med. Chem. Lett. 2021; 12: 1840
    • 10b Yang C.-W, Lee Y.-Z, Hsu H.-Y, Jan J.-T, Lin Y.-L, Chang S.-Y, Peng T.-T, Yang R.-B, Liang J.-J, Liao C.-C, Chao T.-L, Pang Y.-H, Kao H.-C, Huang W.-Z, Lin J.-H, Chang C.-P, Niu G.-H, Wu S.-H, Sytwu H.-K, Chen C.-T, Lee S.-J. Front. Pharmacol. 2020; 11: 606097
    • 10c Tan B, Zhang X, Ansari A, Jadhav P, Tan H, Li K, Chopra A, Ford A, Chi X, Ruiz FX, Arnold E, Deng X, Wang J. Science 2024; 383: 1434
    • 10d Newman DJ, Cragg GM. J. Nat. Prod. 2020; 83: 770
    • 10e Shete SS, Iqbal F, Bhardwaj M, Nandi U, Kumar A, Reddy DS. ACS Med. Chem. Lett. 2023; 14: 1716
    • 11a Donaldson GR, Atkinson MR, Murray AW. Biochem. Biophys. Res. Commun. 1968; 31: 104
    • 11b Ali M, Bhutani KK. Phytochemistry 1989; 28: 3513
    • 11c Stærk D, Christensen J, Lemmich E, Duus J. Ø, Olsen CE, Jaroszewski JW. J. Nat. Prod. 2000; 63: 1584
    • 11d Shiah H.-S, Gao W, Baker DC, Cheng Y.-C. Mol. Cancer Ther. 2006; 5: 2484
    • 11e Fu Y, Lee SK, Min H.-Y, Lee T, Lee J, Cheng M, Kim S. Bioorg. Med. Chem. Lett. 2007; 17: 97
    • 11f Chen C.-Y, Yang S.-C, Lee K.-H, Yang X, Wei L.-Y, Chow L.-P, Wang T.-CV, Hong T.-M, Lin J.-C, Kuan C, Yang P.-C. J. Med. Chem. 2014; 57: 677
    • 12a Yang C.-W, Lee Y.-Z, Hsu H.-Y, Wu C.-M, Chang H.-Y, Chao Y.-S, Lee S.-J. Carcinogenesis 2013; 34: 1304
    • 12b Chemler S. Curr. Bioact. Compd. 2009; 5: 2
    • 13a Govindachari TR, Lakshmikantham MV, Rajadurai S. Tetrahedron 1961; 14: 284
    • 13b Chauncy B, Gellert E. Aust. J. Chem. 1970; 23: 2503
    • 13c Herbert RB, Moody CJ. J. Chem. Soc. D. 1970; 121
    • 13d Liepa AJ, Summons RE. J. Chem. Soc., Chem. Commun. 1977; 826
    • 13e Weinreb SM, Khatri NA, Shringarpure J. J. Am. Chem. Soc. 1979; 101: 5073
    • 13f Mangla VK, Bhakuni DS. Tetrahedron 1980; 36: 2489
    • 13g Khatri NA, Schmitthenner HF, Shringarpure J, Weinreb SM. J. Am. Chem. Soc. 1981; 103: 6387
    • 13h Cragg JE, Herbert RB, Jackson FB, Moody CJ, Nicolson IT. J. Chem. Soc., Perkin Trans. 1 1982; 2477
    • 13i Iida H, Tanaka M, Kibayashi C. J. Chem. Soc., Chem. Commun. 1983; 271
    • 13j Comins DL. Morgan L. A. Tetrahedron Lett. 1991; 32: 5919
    • 13k Pearson WH, Walavalkar R. Tetrahedron 1994; 50: 12293
    • 13l Yamashita S, Kurono N, Senboku H, Tokuda M, Orito K. Eur. J. Org. Chem. 2009; 2009: 1173
    • 13m Niphakis MJ, Georg GI. Org. Lett. 2011; 13: 196
    • 13n Xu X, Liu Y, Park C.-M. Angew. Chem. Int. Ed. 2012; 51: 9372
    • 13o Lahm G, Stoye A, Opatz T. J. Org. Chem. 2012; 77: 6620
    • 13p Liu G.-Q, Reimann M, Opatz T. J. Org. Chem. 2016; 81: 6142
    • 13q Su B, Zhang H, Deng M, Wang Q. Org. Biomol. Chem. 2014; 12: 3616
    • 13r Chen F, Su B, Wang Q. Org. Chem. Front. 2014; 1: 674
    • 13s Cristòfol À, Böhmer C, Kleij AW. Chem. Eur. J. 2019; 25: 15055
    • 13t Han G, Liu Y, Wang Q. Org. Lett. 2013; 15: 5334
    • 13u Li L, Hu Y, Wang K, Wang Q. Chem. Res. Chin. Univ. 2014; 30: 619
    • 13v Lin Q.-X, Ho T.-L. Tetrahedron 2013; 69: 2996
    • 14a Buckley TF. III, Henry R. J. Org. Chem. 1983; 48: 4222
    • 14b Ihara M, Takino Y, Fukumoto K, Kametani T. Heterocycles 1989; 28: 63
    • 14c Comins DL, Chen X, Morgan LA. J. Org. Chem. 1997; 62: 7435
    • 14d Jin Z, Li S.-P, Wang Q.-M, Huang R.-Q. Chin. Chem. Lett. 2004; 15: 1164
    • 14e Fürstner A, Kennedy JW. J. Chem. Eur. J. 2006; 12: 7398
    • 14f Zeng W, Chemler SR. J. Org. Chem. 2008; 73: 6045
    • 14g Wang Z, Li Z, Wang K, Wang Q. Eur. J. Org. Chem. 2010; 292
    • 14h Stoye A, Opatz T. Org. Lett. 2010; 12: 2140
    • 14i Yang X, Shi Q, Bastow KF, Lee K.-H. Org. Lett. 2010; 12: 1416
    • 14j Mai DN, Wolfe JP. J. Am. Chem. Soc. 2010; 132: 12157
    • 14k Hsu S.-F, Ko C.-W, Wu Y.-T. Adv. Synth. Catal. 2011; 353: 1756
    • 15a Spence KA, Hoffmann M, Garg NK. Org. Lett. 2023; 25: 5044
    • 15b St Pierre M, Kempthorne CJ, Liscombe DK, McNulty J. Org. Biomol. Chem. 2023; 21: 8075
  • 16 (±)-Tylophorine (1); Gram-Scale Procedure A solution of compound 10 (1.3 g, 3.190 mmol, 1.0 equiv) in THF (50 mL) was added dropwise to a stirred solution of LiAlH4 (605.4 mg, 15.95 mmol, 5.0 equiv) in anhyd THF (70 mL) at 0 °C, and the mixture was refluxed for 1 h then cooled to 0 °C. Excess LiAlH4 was quenched with 20% aq KOH (15 mL), and the resulting mixture was filtered through Celite, then washed with CHCl3 (100 mL) and MeOH (50 mL), dried (Na2SO4), and concentrated in vacuo. The crude product was crystallized from CHCl3 and Et2O to give a light-yellow solid; yield: 1.2 g (96%); Rf = 0.48 (CH2Cl2–MeOH, 9:1). IR (film): 3397, 2926, 1616, 1512, 1251, 1040 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.84 (s, 1 H), 7.83 (s, 1 H), 7.32 (s, 1 H), 7.17 (s, 1 H), 4.63 (d, J = 14.6 Hz, 1 H), 4.12 (s, 6 H), 4.06 (s, 3 H), 4.06 (s, 3 H), 3.68 (d, J = 14.6 Hz, 1 H), 3.48 (td, J = 8.5, 1.9 Hz, 1 H), 3.38 (dd, J = 15.8, 2.5 Hz, 1 H), 2.95–2.89 (m, 1 H), 2.54–2.44 (m, 2 H), 2.30–2.21 (m, 1 H), 2.21–1.89 (m, 2 H), 1.83–1.73 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 148.7, 148.5 (2), 126.4, 126.1, 125.9, 124.4, 123.7, 123.5, 104.0, 103.5, 103.4, 103.2, 60.3, 56.1, 56.0 (2), 55.3, 54.2, 33.9, 31.4, 21.7. HRMS (ESI): m/z [M + H]+ calcd for C24H28NO4 394.2012; found: 394.2002.