RSS-Feed abonnieren
DOI: 10.1055/a-2352-4835
Iron-Catalyzed Three-Component Asymmetric Carboazidation of Alkenes with Alkanes and Trimethylsilyl Azide
This work was supported by the National Natural Science Foundation of China (22001177 and 22188101), Shenzhen Bay Laboratory (S201100003 and S211101001-1), Shenzhen Bay Qihang Fellow Program (QH23001), Guangdong Pearl River Talent Program (2021QN020268).

Abstract
The fusion of transition-metal catalysis with radical chemistry provides a versatile platform for the asymmetric radical carboazidation of alkenes to enable the rapid assembly of highly functionalized chiral azide compounds. Here, we present an iron-catalyzed asymmetric three-component radical carboazidation that processes electron-deficient alkenes by direct activation of aliphatic C–H bonds. This strategy provides access to a range of valuable chiral azides from readily available chemical feedstocks bearing a tetrasubstituted carbon stereocenter, and their synthetic potential is further showcased through straightforward transformations to provide other valuable enantioenriched building blocks.
Key words
carboazidation - hydrocarbons - ligands - asymmetric synthesis - radical ligand transfer - trimethylsilyl azidePublikationsverlauf
Eingereicht: 21. Mai 2024
Angenommen nach Revision: 25. Juni 2024
Accepted Manuscript online:
25. Juni 2024
Artikel online veröffentlicht:
17. Juli 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Yi H, Zhang GT, Wang HM, Huang ZY, Wang J, Singh AK, Lei AW. Chem. Rev. 2017; 117: 9016
- 1b Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 1c Cao H, Kong DG, Yang L.-C, Chanmungkalakul S, Liu T, Piper JL, Peng ZH, Gao LL, Liu XG, Hong X, Wu J. Nat. Synth. 2022; 1: 794
- 2a Zhang W, Wang F, McCann SD, Wang DH, Chen PH, Stahl SS, Liu GS. Science 2016; 353: 1014
- 2b Murphy JJ, Bastida D, Paria S, Fagnoni M, Melchiorre P. Nature 2016; 532: 218
- 2c Yu H, Zhan T, Zhou Y, Chen L, Liu X, Feng X. ACS Catal. 2022; 12: 5136
- 3a Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 297
- 3b Brase S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
- 4a Ge L, Chiou M.-F, Li Y, Bao H. Green Synth. Catal. 2020; 1: 86
- 4b Sivaguru P, Ning YQ, Bi X. Chem. Rev. 2021; 121: 4253
- 5a Ma X, Chiou M.-F, Ge L, Li X, Li Y, Wu L, Bao H. Chin. J. Catal. 2021; 42: 1634
- 5b Bian K.-J, Nemoto DJr, Kao S.-C, He Y, Li Y, Wang X.-S, West JG. J. Am. Chem. Soc. 2022; 144: 11810
- 6a Ge L, Zhou H, Chiou M.-F, Jiang H, Jian W, Ye C, Li X, Zhu X, Xiong H, Li Y, Song L, Zhang X, Bao H. Nat. Catal. 2020; 4: 28
- 6b Liu W, Pu M, He J, Zhang TH, Dong S, Liu X, Wu Y, Feng X. J. Am. Chem. Soc. 2021; 143: 11856
- 7a Li Y, Lei M, Gong L. Nat. Catal. 2019; 2: 1016
- 7b Jin Y, Fan L.-F, Ng EW. H, Yu L, Hirao H, Gong L.-Z. J. Am. Chem. Soc. 2023; 145: 22031
- 8a Bunescu A, Ha TM, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2017; 56: 10555
- 8b Li W.-Y, Wu C.-S, Wang Z, Luo Y. Chem. Commun. 2018; 54: 11013
- 8c Xu L, Chen J, Chu L. Org. Chem. Front. 2019; 6: 512
- 9 Ge L, Wang H, Liu Y, Feng X. J. Am. Chem. Soc. 2024; 146: 13347
- 10a Liu X, Lin L, Feng X. Acc. Chem. Res. 2011; 44: 574
- 10b Liu X, Lin L, Feng X. Org. Chem. Front. 2014; 1: 298
- 10c Liu X, Zheng H, Xia Y, Lin L, Feng X. Acc. Chem. Res. 2017; 50: 2621
- 10d Liu X, Dong SX, Lin LL, Feng X. Chin. J. Chem. 2018; 36: 791
- 10e Dong S, Liu X, Feng X. Acc. Chem. Res. 2022; 55: 415
- 10f Chen D.-F, Gong L.-Z. Org. Chem. Front. 2023; 10: 3676
- 10g He Y.-M, Cheng Y.-Z, Duan YD, Zhang Y.-D, Fan Q.-H, You S.-L, Luo SZ, Zhu S.-F, Fu X.-F, Zhou Q.-L. CCS Chem. 2023; 5: 2685
- 11a Bian K.-J, Kao S.-C, Nemoto DJr, Chen X.-W, West JG. Nat. Commun. 2022; 13: 7881
- 11b Hooson JF, Tran HN, Bian K.-J, West JG. Chem. Commun. 2024; 60: 3705
For reviews on chiral N,N′-dioxides, see: