Subscribe to RSS
DOI: 10.1055/a-2526-0553
Total Synthesis of the Psammaplysins: Evolution of a Dipolar Cycloaddition Approach
This work was financially supported by the University of Texas Southwestern Medical Center through the W. W. Caruth Jr. Scholarship, the Welch Foundation (I-2045, I-2214), an American Cancer Society Institutional Research Grant (IRG-21-142-16), and a UT Southwestern Medical Center Simmons Comprehensive Cancer Center Support Grant (P30CA142543). A. P. M. acknowledges funding from a McKnight Foundation PhD Fellowship.

Abstract
The psammaplysins are a unique group of bromotyrosine-derived natural products isolated from the Psammaplysilla genus of marine sponges. Aside from the various biological activities they possess, synthetic chemists have been drawn to the family for decades due to the intriguing 5/7-spiroisoxazoline-oxepine core common to all members. Herein, we describe our synthetic approach towards the psammaplysin family in the context of this broader work. Our route centers upon the use of a carefully choreographed alkoxymethylenation/1,3-dipolar cycloaddition to construct the key spiroisoxazoline-oxepine ring system, followed by its functionalization and divergent coupling to access various family members. We also detail the development of the first asymmetric approach to this class of marine natural products.
1 Introduction
2 Initial Synthetic Approach and Challenges Encountered
3 Total Synthesis of Psammaplysins A, M, O and Q and Ceratinamide A
4 Development of an Asymmetric Solution to the Family
5 Conclusions and Outlook
Key words
kinetic resolution - dipolar cycloaddition - nitrile oxide - total synthesis - psammaplysin - alkaloidsPublication History
Received: 15 November 2024
Accepted after revision: 27 January 2025
Accepted Manuscript online:
27 January 2025
Article published online:
31 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 For a review, see: Hentschel F, Lindel T. Synthesis 2010; 181
- 2a Rotem M, Carmely S, Kashman Y, Loya Y. Tetrahedron 1983; 39: 667
- 2b Roll DM, Chang CW. J, Scheuer PJ, Gray GA, Shoolery JN, Matsumoto GK, Van Duyne GD, Clardy J. J. Am. Chem. Soc. 1985; 107: 2916
- 3 For a review, see: Youssef DT. A, Shaala LA. Mar. Drugs 2022; 20: 663
- 4a Smietana M, Gouverneur V, Mioskowski C. Tetrahedron Lett. 1999; 40: 1291
- 4b Colinas PA, Jäger V, Lieberknecht A, Bravo RD. Tetrahedron Lett. 2003; 44: 1071
- 4c Das P, Valente EJ, Hamme AT. II. Eur. J. Org. Chem. 2014; 13: 2659
- 4d Das P, Omollo AO, Sitole LJ, McClendon E, Valente EJ, Raucher D, Walker LR, Hamme AT. II. Tetrahedron Lett. 2015; 56: 1794
- 4e Carlson JS. Ph.D. Dissertation 2015
- 5 Zhang L, Wang R, Wang C, Liu B, Yang J, Zhang Z, Huang J, Yang Z. Org. Lett. 2022; 24: 3786
- 6 Paciorek J, Höfler D, Sokol KR, Wurst K, Magauer T. J. Am. Chem. Soc. 2022; 144: 19704
- 7 Lauberteaux J, Lebrun A, van der Lee A, Mauduit M, de Figuerido RM, Campagne J. Org. Lett. 2019; 21: 10007
- 8a Cannizzo LF, Grubbs RH. J. Org. Chem. 1985; 50: 2387
- 8b Kamakura D, Todoroki H, Urabe D, Hagiwara K, Inoue M. Angew. Chem. Int. Ed. 2020; 59: 479
- 9 Lehr K, Fürstner A. Tetrahedron 2012; 68: 7695
- 10 Mukaiyama T, Matsuo J, Kitagawa H. Chem. Lett. 2000; 29: 1250
- 11 Gómez AM, Pedregosa A, Uriel C, Valverde S, López JC. Eur. J. Org. Chem. 2010; 29: 5619
- 12 Coumbarides GS, Motevalli M, Muse WA, Wyatt PB. J. Org. Chem. 2006; 71: 7888
- 13 Maimone TJ, Shi J, Ashida S, Baran PS. J. Am. Chem. Soc. 2009; 131: 17066
- 14 Wetter C, Studer A. Chem. Commun. 2004; 2: 174
- 15 Takeda T, Sato K, Tsubouchi A. Synthesis 2004; 1457
- 16 Takeda T, Shono T, Ito K, Sasaki H, Tsubouchi A. Tetrahedron Lett. 2003; 44: 7897
- 17a Schmidt B. J. Org. Chem. 2004; 69: 7672
- 17b Clark JR, Griffiths JR, Diver ST. J. Am. Chem. Soc. 2013; 135: 3327
- 17c Liniger M, Liu Y, Stoltz BM. J. Am. Chem. Soc. 2017; 139: 13944
- 18a Cavedon C, Sletten ET, Madani A, Niemeyer O, Seeberger PH, Pieber B. Org. Lett. 2021; 23: 514
- 18b Konrad DB, Rühmann K, Ando H, Hetzler BE, Strassner N, Houk KN, Matsuura BS, Trauner D. Science 2022; 377: 411
- 19 Since the compounds are racemic and contain only two stereocenters, we cannot rule out the possibility that the epimerization occurs at the C-6 spiroketal center. However, given its stability to acidic conditions earlier in the sequence, we consider C-7 epimerization more likely.
- 20 Han C, Lee JP, Lobkovsky E, Porco JA. J. Am. Chem. Soc. 2005; 127: 10039
- 21 Bardhan S, Schmitt DC, Porco JA. Jr. Org. Lett. 2006; 8: 927
- 22 Datta S, Bhattacharya S. Soft Matter 2015; 11: 1945
- 23a Shimizu M, Ukaji Y, Inomata K. Chem. Lett. 1996; 25: 455
- 23b Sibi MP, Itoh K, Jasperse CP. J. Am. Chem. Soc. 2004; 126: 5366
- 23c Brinkmann Y, Madhushaw RJ, Jazzar R, Bernardinelli G, Kündig EP. Tetrahedron 2007; 63: 8413
- 23d Gucma M, Gołębiewski WM. J. Heterocycl. Chem. 2008; 45: 241
- 23e Suga H, Adachi Y, Fujimoto K, Furihata Y, Tsuchida T, Kakehi A, Baba T. J. Org. Chem. 2009; 74: 1099
- 23f Nishiura Y, Gonzalez KJ, Cusumano AQ, Stoltz BM. Org. Lett. 2023; 25: 6469
- 24a Jones RH, Robinson GC, Thomas EJ. Tetrahedron 1984; 40: 177
- 24b Kudyba I, Joźwik J, Romański J, Raczkoa J, Jurczak J. Tetrahedron: Asymmetry 2005; 16: 2257
- 24c Romański J, Jóźwik J, Chapuis C, Asztemborska M, Jurczak J. Tetrahedron: Asymmetry 2007; 18: 865
- 24d Romański J, Joźwik J, Chapius C, Jurczak J. Helv. Chim. Acta 2007; 90: 2116
- 25a Curran DP, Kim BH, Piyasena HP, Loncharich RJ, Houk KN. J. Org. Chem. 1987; 52: 2137
- 25b Olsson T, Stem K, Westman G. Tetrahedron 1990; 46: 2473
- 25c Curran DP, Heffner TA. J. Org. Chem. 1990; 55: 4585
- 25d Oppolzer W, Kingma AJ, Pillai SK. Tetrahedron Lett. 1991; 32: 4893
- 25e Kim BH, Chung YJ, Keum G, Kim J, Kim K. Tetrahedron Lett. 1992; 33: 6811
- 25f Yamamoto H, Watanabe S, Kadotani K, Hasegawa M, Noguchi M, Kanemasa S. Tetrahedron Lett. 2000; 41: 3131
- 26 Li X, Jiang H, Uffman EW, Guo L, Zhang Y, Yang X, Birman VB. J. Org. Chem. 2012; 77: 1722
- 27 For a Cu-catalyzed kinetic resolution that was found to be moderately effective, see: Lee JY, You YS, Kang SH. J. Am. Chem. Soc. 2011; 133: 1772
- 28 Greenhalgh MD, Taylor JE, Smith AD. Tetrahedron 2018; 74: 5554
- 29a Mándi A, Mudianta IW, Kurtán T, Garson MJ. J. Nat. Prod. 2015; 78: 2051
- 29b Recently, X-ray analysis was used to determine the absolute configuration of the psammaplysin-terpene hybrid natural product, frondoplysin A, see: Jiao W.-H, Li J, Zhang M.-M, Cui J, Gui Y.-H, Zhang Y, Li J.-Y, Liu K.-C, Lin H.-W. Org. Lett. 2019; 21: 6190
Debenzylation could also be effected by DDQ under green light irradiation, though conversions were lower, see:
For catalytic asymmetric dipolar cycloadditions of nitrile oxides less prone to dimerization, see:
For the use of chiral-auxiliary modified dipolarophiles in nitrile oxide [3+2] cycloadditions, see: