Subscribe to RSS
DOI: 10.1055/a-2539-4680
Asymmetric [3+2] Annulations of Propargylic Carbonates and Vinylogous Nucleophiles via a Nickel-Catalyzed Alkenylation Pathway
We are grateful for the financial support from the NSFC (21921002, 21931006, and 21971166) and the 111 project (B18035).

Abstract
The alkenylation reaction of propargylic derivatives catalyzed by transition metals represents a powerful synthetic strategy, usually applied in a double-attack mode to access polyfunctional cyclic products. Whereas a few asymmetric alkenylation reactions involving palladium catalysis have been uncovered, we report here that a nonprecious Ni(0)-based chiral complex exhibits superior efficacy in assemblies of a diversity of propargylic carbonates and vinylogous donors. The reactions proceed through consecutive vinylogous activations of nucleophiles, finally giving [3+2] annulation frameworks by a double attack on nickel-activated species of propargylic carbonates. Both N-trifluoroethyl imines from activated ketones and all-carbon-based vinylogous donors can be utilized, and products embedding a 4-methylene-3,4-dihydro-2H-pyrrole core or a 3-methylenecyclopentene framework, respectively, are efficiently constructed with high regio-, diastereo-, and enantioselectivities. The substrate scope is broad, and further synthetic elaborations of the products permit access to more-versatile structures with emerging applications. Density functional theory calculations and control experiments were carried out to elucidate the reaction mechanism.
Key words
propargylic carbonates - vinylogous donors - nickel catalysis - alkenylation - [3+2] annulation - enantioselectivityPublication History
Received: 28 December 2024
Accepted after revision: 14 February 2025
Accepted Manuscript online:
14 February 2025
Article published online:
28 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Marion N, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2750
- 1b Kazem Shiroodi R, Gevorgyan V. Chem. Soc. Rev. 2013; 42: 4991
- 1c Yang S, Fang X. Synlett 2025; in press
- 1d Zhu Y, Sun L, Lu P, Wang Y. ACS Catal. 2014; 4: 1911
- 1e Song X.-R, Yang R, Xiao Q. Adv. Synth. Catal. 2021; 363: 852
- 2a Guo L.-N, Duan X.-H, Liang Y.-M. Acc. Chem. Res. 2011; 44: 111
- 2b Niu B, Wei Y, Shi M. Org. Chem. Front. 2021; 8: 3475
- 2c O’Broin CQ, Guiry PJ. J. Org. Chem. 2020; 85: 10321
- 3a Hu Q, He Z, Peng L, Guo C. Nat. Synth. 2022; 1: 322
- 3b Huang X, Wu S, Wu W, Li P, Fu C, Ma S. Nat. Commun. 2016; 7: 12382
- 3c O’Broin CQ, Guiry PJ. Org. Lett. 2019; 21: 5402
- 3d Peng L, He Z, Xu X, Guo C. Angew. Chem. Int. Ed. 2020; 59: 14270
- 3e Xu X, Peng L, Chang X, Guo C. J. Am. Chem. Soc. 2021; 143: 21048
- 3f Peng L, Wang M, Huang J, Guo C, Gong L.-Z, Song J. J. Am. Chem. Soc. 2023; 145: 28085
- 4a Wang H, Luo H, Zhang Z.-M, Zheng W.-F, Yin Y, Qian H, Zhang J, Ma S. J. Am. Chem. Soc. 2020; 142: 9763
- 4b Xu X, Zhang J, Dong S, Lin L, Lin X, Liu X, Feng X. Angew. Chem. Int. Ed. 2018; 57: 8734
- 4c Zheng W.-F, Zhang W, Huang C, Wu P, Qian H, Wang L, Guo Y.-L, Ma S. Nat. Catal. 2019; 2: 997
- 5a Ishida N, Hori Y, Okumura S, Murakami M. J. Am. Chem. Soc. 2019; 141: 84
- 5b Ishida N, Kamino Y, Murakami M. Synlett 2020; 32: 1621
- 5c Locascio TM, Tunge JA. Chem. Eur. J. 2016; 22: 18140
- 5d O’Broin CQ, Guiry PJ. Org. Lett. 2020; 22: 879
- 6a Montgomery TD, Rawal VH. Org. Lett. 2016; 18: 740
- 6b Mondal D, Pal G, Chowdhury C. Chem. Commun. 2021; 57: 5462
- 6c Dai M, Sun Z, Chen L.-A. Angew. Chem. Int. Ed. 2022; 61: e202203835
- 7a Ding L, Gao R.-D, You S.-L. Chem. Eur. J. 2019; 25: 4330
- 7b Nibbs AE, Montgomery TD, Zhu Y, Rawal VH. J. Org. Chem. 2015; 80: 4928
- 7c Yoshida M, Higuchi M, Shishido K. Org. Lett. 2009; 11: 4752
- 7d Zhou Y, Zhu F.-L, Liu Z.-T, Zhou X.-M, Hu X.-P. Org. Lett. 2016; 18: 2734
- 8a Chirik P, Morris R. Acc. Chem. Res. 2015; 48: 2495
- 8b Bullock RM, Chen JG, Gagliardi L, Chirik PJ, Farha OK, Hendon CH, Jones CW, Keith JA, Klosin J, Minteer SD, Morris RH, Radosevich AT, Rauchfuss TB, Strotman NA, Vojvodic A, Ward TR, Yang JY, Surendranath Y. Science 2020; 369: eabc3183
- 8c Wu L, Wei H, Shen J, Chen J, Zhang W. Acta Chim. Sin. (Engl. Ed.) 2021; 79: 1331
- 9a Liu Y, Wang L, Ma D, Song Y. Molecules 2023; 28: 2990
- 9b Tang S, Zhang X, Sun J, Niu D, Chruma JJ. Chem. Rev. 2018; 118: 10393
- 10a Nair AS, Singh AK, Kumar A, Kumar S, Sukumaran S, Koyiparambath VP, Pappachen LK, Rangarajan TM, Kim H, Mathew B. Processes 2022; 10: 2054
- 10b Li H.-P, He X.-H, Peng C, Li J.-L, Han B. Nat. Prod. Rep. 2023; 40: 988
- 10c Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
- 11 Zhan G, Shi M.-L, Lin W.-J, Ouyang Q, Du W, Chen Y.-C. Chem. Eur. J. 2017; 23: 6286
- 12a Nattmann L, Cornella J. Organometallics 2020; 39: 3295
- 12b Cao Y.-X, Wodrich MD, Cramer N. Nat. Commun. 2023; 14: 7640
- 13 Guo W, Lv G, Chen J, Gao W, Ding J, Wu H. Tetrahedron 2010; 66: 2297
- 14a Panda SS, Girgis AS, Aziz MN, Bekheit MS. Molecules 2023; 28: 618
- 14b Zhou L.-M, Qu R.-Y, Yang G.-F. Expert Opin. Drug Discovery 2020; 15: 603
- 14c Panda SS, Jones RA, Bachawala P, Mohapatra PP. Mini-Rev. Med. Chem. 2017; 17: 1515
- 15a Xia Y, Liang Y, Chen Y, Wang M, Jiao L, Huang F, Liu S, Li Y, Yu Z.-X. J. Am. Chem. Soc. 2007; 129: 3470
- 15b Wang Y, Yu Z.-X. Org. Biomol. Chem. 2017; 15: 7439
- 16 Larock RC, Berrios-Peña NG, Fried CA. J. Org. Chem. 1991; 56: 2615
For selected reviews, see:
For selected reviews, see: