Subscribe to RSS
DOI: 10.1055/a-2552-5614
Synthesis of Alkenyl Nitriles by Bidentate Cobalt-Catalyzed Acceptorless Dehydrogenation Coupling of Alcohols and Nitriles
This work was supported by the National Natural Science Foundation of China (22371083, 22001086), the Fundamental Research Funds for the Central Universities (2024BRB003, HUST 2020kfyXJJS094), the State Key Laboratory of Natural and Biomimetic Drugs, Peking University (K202409), and the Innovation and Talent Recruitment Base of New Energy Chemistry and Device (B21003).

Abstract
A bidentate Co(III)-catalyzed α-olefination of nitriles has been developed. This one-pot protocol provides a simple procedure for the synthesis of alkenyl nitriles from diverse alcohols and nitriles. An extensive substrate scope, good functional-group compatibility, and high atom economy are displayed. Preliminary mechanistic studies revealed that C=C bond formation proceeds through activation of the O–H bond of the alcohol via an unsaturated 16-electron intermediate cobalt complex, and subsequent condensation of the in situ-formed aldehyde with the nitrile. Remarkably, this method liberates H2 and H2O as the only byproducts.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2552-5614.
- Supporting Information
Publication History
Received: 02 January 2025
Accepted after revision: 06 March 2025
Accepted Manuscript online:
06 March 2025
Article published online:
14 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Fleming FF, Wang Q. Chem. Rev. 2003; 103: 2035
- 1b Kurono N, Ohkuma T. ACS Catal. 2016; 6: 989
- 1c López R, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 13170
- 2a Zhang L.-H, Wu L, Raymon HK, Chen R, Corral L, Shirley MA, Narla RK, Gamez J, Muller GW, Stirling DI, Bartlett JB, Schafer PH, Payvandi F. Cancer Res. 2006; 66: 951
- 2b Thanki K, Gangwal RP, Sangamwar AT, Jain S. J. Controlled Release 2013; 170: 15
- 2c Nitsche C, Steuer C, Klein CD. Bioorg. Med. Chem. 2011; 19: 7318
- 2d Männistö PT, Kaakkola S. Pharmacol. Toxicol. (Oxford U. K.) 1990; 66: 317
- 2e Janssen PA. J, Lewi PJ, Arnold E, Daeyaert F, de Jonge M, Heeres J, Koymans L, Vinkers M, Guillemont J, Pasquier E, Kukla M, Ludovici D, Andries K, de Béthune M.-P, Pauwels R, Das K, Clark AD. Jr, Frenkel YV, Hughes SH, Medaer B, De Knaep F, Bohets H, De Clerck F, Lampo A, Williams P, Stoffels P. J. Med. Chem. 2005; 48: 1901
- 2f Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 3a Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW. Science 2010; 330: 1222
- 3b Barta K, Ford PC. Acc. Chem. Res. 2014; 47: 1503
- 4a Junge K, Papa V, Beller M. Chem. Eur. J. 2019; 25: 122
- 4b Gunanathan C, Milstein D. Science 2013; 341: 1229712
- 4c Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
- 4d Crabtree RH. Chem. Rev. 2017; 117: 9228
- 4e Choi J, MacArthur AH. R, Brookhart M, Goldman AS. Chem. Rev. 2011; 111: 1761
- 5a Obora Y. ACS Catal. 2014; 4: 3972
- 5b Hamid MH. S. A, Slatford PA, Williams JM. J. Adv. Synth. Catal. 2007; 349: 1555
- 5c Chelucci G. Coord. Chem. Rev. 2017; 331: 37
- 6a Slatford PA, Whittlesey MK, Williams JM. J. Tetrahedron Lett. 2006; 47: 6787
- 6b Motokura K, Nishimura D, Mori K, Mizugaki T, Ebitani K, Kaneda K. J. Am. Chem. Soc. 2004; 126: 5662
- 6c Motokura K, Fujita N, Mori K, Mizugaki T, Ebitani K, Htsukawa K, Kanedar K. Chem. Eur. J. 2006; 12: 8228
- 6d Cheung HW, Li J, Zheng W, Zhou Z, Chiu YH, Lin Z, Lau CP. Dalton Trans. 2010; 39: 265
- 7 Li F, Zou X, Wang N. Adv. Synth. Catal. 2015; 357: 1405
- 8a Löfberg C, Grigg R, Whittaker MA, Keep A, Derrick A. J. Org. Chem. 2006; 71: 8023
- 8b Anxionnat B, Gomez Pardo D, Ricci G, Cossy J. Org. Lett. 2011; 13: 4084
- 9 Buil ML, Esteruelas MA, Herrero J, Izquierdo S, Pastor IM, Yus M. ACS Catal. 2013; 3: 2072
- 10 Ma W, Cui S, Sun H, Tang W, Xue D, Li C, Fan J, Xiao J, Wang C. Chem. Eur. J. 2018; 24: 13118
- 11 Singh A, Findlater M. Organometallics 2021; 41: 3145
- 12 Bera S, Bera A, Banerjee D. Chem. Commun. 2020; 56: 6850
- 13 Borghs JC, Tran MA, Sklyaruk J, Rueping M, El-Sepelgy O. J. Org. Chem. 2019; 84: 7927
- 14 Hall MI, Pridmore SJ, Williams JM. J. Adv. Synth. Catal. 2008; 350: 1975
- 15 Chakraborty S, Das UK, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 11710
- 16 Li J, Liu Y, Tang W, Xue D, Li C, Xiao J, Wang C. Chem. Eur. J. 2017; 23: 14445
- 17 Thiyagarajan S, Gunanathan C. ACS Catal. 2018; 8: 2473
- 18a Putta RR, Chun S, Lee SB, Hong J, Choi SH, Oh DC, Hong S. J. Org. Chem. 2022; 87: 16378
- 18b Paudel K, Xu S, Ding K. Org. Lett. 2021; 23: 5028
- 19a Kolb D, Friedmann K, König B. ChemCatChem 2024; 16: e202400936
- 19b Bains AK, Yadav A, Adhikari D. Org. Lett. 2021; 23: 2019
- 20a Zhu M, Tian H, Chen S, Xue W, Wang Y, Lu H, Li T, Chen F, Tang C. J. Catal. 2022; 416: 170
- 20b Tian H, Xue W, Wu J, Yang Z, Lu H, Tang C. Org. Chem. Front. 2022; 9: 4554
- 20c Tian H, Lu Y, Tang C. ChemSusChem 2025; 18: e202401244
- 20d Tian H, Ding C, Liao R, Li M, Tang C. J. Am. Chem. Soc. 2024; 146: 11801
- 21a Xue W, Zhu Z, Chen S, You B, Tang C. J. Am. Chem. Soc. 2023; 145: 4142
- 21b Xue W, Jiang Y, Lu H, You B, Wang X, Tang C. Angew. Chem. Int. Ed. 2023; 62: e202314364
- 21c Sun F, Huang J, Wei Z, Tang C, Liu W. Angew. Chem. Int. Ed. 2023; 62: e202303433
- 21d Lu Y, Zhu M, Chen S, Yao J, Li T, Wang X, Tang C. J. Am. Chem. Soc. 2024; 146: 23338
- 21e Jiang Y, Chen S, Chen Y, Gu A, Tang C. J. Am. Chem. Soc. 2024; 146: 2769
- 21f Chen S, Xue W, Tang C. ChemSusChem 2022; 15: e202201522
- 22a Srimani D, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2014; 53: 11092
- 22b Beletskaya IP, Najera C, Yus M. Chem. Soc. Rev. 2020; 49: 7101
- 22c Wang C, Fan Q, Wang G, Zhu Q. Mol. Catal. 2023; 547: 113352
-
23
Alkenyl Nitriles 3; General Procedure
A 25 mL Schlenk tube containing a stirring bar was charged with the appropriate nitrile 1 (0.2 mmol, 1 equiv), [Cp*Co(t-BuPPH)I]+I– (10.0 mol%), and NaOH (1.0 equiv), and the system was evacuated and refilled with argon three times. The alcohol 2 (0.2 mmol, 1.0 equiv) and anhyd toluene (1.0 mL) were added successively, and the mixture was stirred at 100 °C for 24 h. The mixture was then cooled to r.t., diluted with EtOAc, and passed through Celite. The solvent was removed in vacuo and the crude product was purified by TLC.
(2Z)-2-(4-Methoxyphenyl)-3-phenylacrylonitrile (3a)
Prepared by the general procedure and isolated by TLC [silica gel, PE–EtOAc (10:1)] as yellow crystals; yield: 43.3 mg (92%); mp 56–61 °C; Rf
= 0.49 (PE–EtOAc, 10:1, UV).
IR (KBr): 2918 (m), 2214 (m), 1606 (s), 1511 (s), 1256 (s), 1180 (s), 1031 (m), 835 (m), 771 (m), 694 (m), 627 (w), 577 (w), 530 (m), 432 (w) cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.86 (d, J = 7.5 Hz, 2 H), 7.67–7.58 (m, 2 H), 7.50–7.38 (m, 4 H), 7.01–6.92 (m, 2 H), 3.86 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 160.6, 140.3, 134.1, 130.3, 129.2, 129.0, 127.5, 127.1, 118.3, 114.6, 111.4, 55.6. LRMS ESI: m/z [M + H]+ calcd for C16H14NO: 236.1; found: 236.1.