Synlett
DOI: 10.1055/a-2552-5614
letter
First-Row Transition-Metal Catalysis for Organic Synthesis

Synthesis of Alkenyl Nitriles by Bidentate Cobalt-Catalyzed Acceptorless Dehydrogenation Coupling of Alcohols and Nitriles

Zhaolun Zhang
a   Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, P. R. of China
,
Sanxia Chen
a   Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, P. R. of China
,
Haitao Tian
a   Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, P. R. of China
,
Conghui Tang
a   Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, P. R. of China
b   State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, P. R. of China
› Institutsangaben
This work was supported by the National Natural Science Foundation of China (22371083, 22001086), the Fundamental Research Funds for the Central Universities (2024BRB003, HUST 2020kfyXJJS094), the State Key Laboratory of Natural and Biomimetic Drugs, Peking University (K202409), and the Innovation and Talent Recruitment Base of New Energy Chemistry and Device (B21003).


Abstract

A bidentate Co(III)-catalyzed α-olefination of nitriles has been developed. This one-pot protocol provides a simple procedure for the synthesis of alkenyl nitriles from diverse alcohols and nitriles. An extensive substrate scope, good functional-group compatibility, and high atom economy are displayed. Preliminary mechanistic studies revealed that C=C bond formation proceeds through activation of the O–H bond of the alcohol via an unsaturated 16-electron intermediate cobalt complex, and subsequent condensation of the in situ-formed aldehyde with the nitrile. Remarkably, this method liberates H2 and H2O as the only byproducts.

Supporting Information



Publikationsverlauf

Eingereicht: 02. Januar 2025

Angenommen nach Revision: 06. März 2025

Accepted Manuscript online:
06. März 2025

Artikel online veröffentlicht:
14. April 2025

© 2025. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Zhang L.-H, Wu L, Raymon HK, Chen R, Corral L, Shirley MA, Narla RK, Gamez J, Muller GW, Stirling DI, Bartlett JB, Schafer PH, Payvandi F. Cancer Res. 2006; 66: 951
    • 2b Thanki K, Gangwal RP, Sangamwar AT, Jain S. J. Controlled Release 2013; 170: 15
    • 2c Nitsche C, Steuer C, Klein CD. Bioorg. Med. Chem. 2011; 19: 7318
    • 2d Männistö PT, Kaakkola S. Pharmacol. Toxicol. (Oxford U. K.) 1990; 66: 317
    • 2e Janssen PA. J, Lewi PJ, Arnold E, Daeyaert F, de Jonge M, Heeres J, Koymans L, Vinkers M, Guillemont J, Pasquier E, Kukla M, Ludovici D, Andries K, de Béthune M.-P, Pauwels R, Das K, Clark AD. Jr, Frenkel YV, Hughes SH, Medaer B, De Knaep F, Bohets H, De Clerck F, Lampo A, Williams P, Stoffels P. J. Med. Chem. 2005; 48: 1901
    • 2f Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 6a Slatford PA, Whittlesey MK, Williams JM. J. Tetrahedron Lett. 2006; 47: 6787
    • 6b Motokura K, Nishimura D, Mori K, Mizugaki T, Ebitani K, Kaneda K. J. Am. Chem. Soc. 2004; 126: 5662
    • 6c Motokura K, Fujita N, Mori K, Mizugaki T, Ebitani K, Htsukawa K, Kanedar K. Chem. Eur. J. 2006; 12: 8228
    • 6d Cheung HW, Li J, Zheng W, Zhou Z, Chiu YH, Lin Z, Lau CP. Dalton Trans. 2010; 39: 265
  • 7 Li F, Zou X, Wang N. Adv. Synth. Catal. 2015; 357: 1405
  • 9 Buil ML, Esteruelas MA, Herrero J, Izquierdo S, Pastor IM, Yus M. ACS Catal. 2013; 3: 2072
  • 10 Ma W, Cui S, Sun H, Tang W, Xue D, Li C, Fan J, Xiao J, Wang C. Chem. Eur. J. 2018; 24: 13118
  • 11 Singh A, Findlater M. Organometallics 2021; 41: 3145
  • 12 Bera S, Bera A, Banerjee D. Chem. Commun. 2020; 56: 6850
  • 13 Borghs JC, Tran MA, Sklyaruk J, Rueping M, El-Sepelgy O. J. Org. Chem. 2019; 84: 7927
  • 14 Hall MI, Pridmore SJ, Williams JM. J. Adv. Synth. Catal. 2008; 350: 1975
  • 15 Chakraborty S, Das UK, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 11710
  • 16 Li J, Liu Y, Tang W, Xue D, Li C, Xiao J, Wang C. Chem. Eur. J. 2017; 23: 14445
  • 17 Thiyagarajan S, Gunanathan C. ACS Catal. 2018; 8: 2473
  • 23 Alkenyl Nitriles 3; General Procedure A 25 mL Schlenk tube containing a stirring bar was charged with the appropriate nitrile 1 (0.2 mmol, 1 equiv), [Cp*Co(t-BuPPH)I]+I (10.0 mol%), and NaOH (1.0 equiv), and the system was evacuated and refilled with argon three times. The alcohol 2 (0.2 mmol, 1.0 equiv) and anhyd toluene (1.0 mL) were added successively, and the mixture was stirred at 100 °C for 24 h. The mixture was then cooled to r.t., diluted with EtOAc, and passed through Celite. The solvent was removed in vacuo and the crude product was purified by TLC. (2Z)-2-(4-Methoxyphenyl)-3-phenylacrylonitrile (3a) Prepared by the general procedure and isolated by TLC [silica gel, PE–EtOAc (10:1)] as yellow crystals; yield: 43.3 mg (92%); mp 56–61 °C; Rf = 0.49 (PE–EtOAc, 10:1, UV). IR (KBr): 2918 (m), 2214 (m), 1606 (s), 1511 (s), 1256 (s), 1180 (s), 1031 (m), 835 (m), 771 (m), 694 (m), 627 (w), 577 (w), 530 (m), 432 (w) cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.86 (d, J = 7.5 Hz, 2 H), 7.67–7.58 (m, 2 H), 7.50–7.38 (m, 4 H), 7.01–6.92 (m, 2 H), 3.86 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 160.6, 140.3, 134.1, 130.3, 129.2, 129.0, 127.5, 127.1, 118.3, 114.6, 111.4, 55.6. LRMS ESI: m/z [M + H]+ calcd for C16H14NO: 236.1; found: 236.1.