Subscribe to RSS
DOI: 10.1055/s-0029-1219363
Thieme Chemistry Journal Awardees - Where Are They Now? Bifunctional Organocatalysis with N-Formyl-l-Proline: A Novel Approach to Epoxide Ring Opening and Sulfide Oxidation
Publication History
Publication Date:
08 February 2010 (online)
Abstract
A conceptually distinct approach to the aminolysis of 1,2-epoxides, which involves Lewis base-Brønsted acid catalysis employing N-formyl-l-proline as an easily accessible bifunctional organocatalyst and water as a solvent is presented. The potential of N-formyl-l-proline as organocatalyst for the sulfide oxidation reaction using aqueous hydrogen peroxide as environmentally benign and readily available oxidant is also demonstrated. Good to high yields are achieved for both reactions.
Key words
bifunctional organocatalysis - Lewis base-Brønsted acid - epoxides - ring opening - amino alcohols - sulfide oxidation - sulfoxides
-
1a
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 ; Angew. Chem. 2004, 116, 5248 -
1b
Tian SK.Chen Y.Hang J.Tang L.McDaid P.Deng L. Acc. Chem. Res. 2004, 37: 621 -
1c
Miller SJ. Acc. Chem. Res. 2004, 37: 601 -
2a
Jagtap SB.Tsogoeva SB. Chem. Commun. 2006, 4747 -
2b
Baudequin C.Chaturvedi D.Tsogoeva SB. Eur. J. Org. Chem. 2007, 2623 -
2c
Stingl, K., Tsogoeva,
S. B. unpublished results. -
3a
Wu S.Takeya R.Eto M.Tomizawa C. J. Pestic. Sci. 1987, 12: 221 -
3b
Corey EJ.Bakshi RK.Shibata S.Chen CP.Singh VK. J. Am. Chem. Soc. 1987, 109: 7925 -
3c
Rogers GA.Parson SM.Anderson DC.Nilsson LM.Bhar BA.Kornreich WD.Kaufman R.Jacobs RS.Kirtman B. J. Med. Chem. 1989, 32: 1217 -
3d
Auvin-Guette C.Rebuffat S.Prigent Y.Bodo B.
J. Am. Chem. Soc. 1992, 114: 2170 -
3e
Takehara J.Hashiguchi S.Fujii A.Inoue SI.Ikaria T.Nayori R. Chem. Commun. 1996, 233 -
3f
Ager DJ.Prakash I.Schaad DR. Chem. Rev. 1996, 96: 835 -
3g
Bergmeier SC. Tetrahedron 2000, 56: 2561 -
3h
Lee H.-S.Kang SH. Synlett 2004, 1673 - 4 For excellent review on metal-mediated
ring-opening reactions of epoxides, see:
Schneider C. Synthesis 2006, 3919 - For selected recent examples, see, for Sc(OTf)3:
-
5a
Schneider C.Sreekanth AR.Mai E. Angew. Chem. Int. Ed. 2004, 43: 5691 ; Angew. Chem. 2004, 116, 5809 -
5b
Placzek AT.Donelson JL.Trivedi R.Gibbs RA.De S K. Tetrahedron Lett. 2005, 46: 9029 - For LiClO4:
-
5c
Heydari A.Mehrdad M.Maleki A.Ahmadi N. Synthesis 2004, 1563 -
5d
Azizi N.Saidi MR. Can. J. Chem. 2005, 83: 505 - For LiBr:
-
5e
Chakraborti AK.Rudrawar S.Kondaskar A. Eur. J. Org. Chem. 2004, 3597 -
5f
Babic A.Sova M.Gobec S.Pecar S. Tetrahedron Lett. 2006, 47: 1733 - For Al(OTf)3:
-
5g
Fringuelli F.Pizzo F.Tortoioli S.Vaccaro L. J. Org. Chem. 2004, 69: 7745 -
5h
Williams DBG.Lawton M. Tetrahedron Lett. 2006, 47: 6557 - For BiCl3:
-
5i
McCluskey A.Leitch SK.Garner J.Caden CE.Hill TA.Odell LR.Stewart SG. Tetrahedron Lett. 2005, 46: 8229 - For Bi(OTf)3 and Bi(TFA)3:
-
5j
Khodaei MM.Khosropour AR.Ghozati K. Tetrahedron Lett. 2004, 45: 3525 - For CoCl2:
-
5k
Sundararajan G.Vijayakrishna K.Varghese B. Tetrahedron Lett. 2004, 45: 8253 - For Cu(BF4)2:
-
5l
Kamal A.Ramu R.Azhar MA.Khanna GBR. Tetrahedron Lett. 2005, 46: 2675 -
5m
Yarapathy VR.Mekala S.Rao BV.Tammishetti S. Catal. Commun. 2006, 7: 466 - For K5CoW12O40˙3H2O and (NH4)8[CeW10O36]˙20H2O:
-
5n
Mirkhani V.Tangestaninejad S.Yadollahi B.Alipanah L. Catal. Lett. 2005, 101: 93 -
5o
Rafiee E.Tangestaninejad S.Habibi MH.Mirkhani V. Synth. Commun. 2004, 34: 3673 - For [Cr(salen)Cl]:
-
5p
Bartoli G.Bosco M.Carlone A.Locatelli M.Massaccesi M.Melchiorre Sambri L. Org. Lett. 2004, 6: 2173 -
5q
Kureshy RI.Sing S.Khan N.Abdi SHR.Agrawal S.Jasra RV. Tetrahedron: Asymmetry 2006, 17: 1638 - 6
Ranu BC.Jana U. J. Org. Chem. 1998, 63: 8212 -
7a
Fan R.-H.Hou X.-L. J. Org. Chem. 2003, 68: 726 -
7b
Wu J.Xia H.-G. Green Chem. 2005, 7: 708 -
7c
Surendra K.Krishnaveni NS.Rao KR. Synlett 2005, 506 -
7d
Kleiner CM.Schreiner PR. Chem. Commun. 2006, 4315 -
7e
Fleming EM.Quigley C.Rozas I.Connon SJ. J. Org. Chem. 2008, 73: 948 -
7f
Connon SJ. Synlett 2009, 354 -
7g
Rajesh Krishnan G.Sreekumar K. Polymer 2008, 49: 5233 - For examples of aminolysis of 1,2-epoxides in the absence of any catalyst, see:
-
7h
Azizi M.Saidi MR. Org. Lett. 2005, 7: 3649 -
7i
Bonollo S.Fringuelli F.Pizzo F.Vaccaro L. Green Chem. 2006, 8: 960 -
7j
Desai H.D’Souza BR.Foether D.Johnson BF.Lindsay HA. Synthesis 2007, 902 - For excellent reviews on water as a solvent, see:
-
8a
Li C.-J.Chen L. Chem. Soc. Rev. 2006, 35: 68 -
8b
Herrerías CI.Yao XQ.Li ZP.Li C.-J. Chem. Rev. 2007, 107: 2546 -
8c
Dallinger D.Kappe CO. Chem. Rev. 2007, 107: 2563 -
8d
Chanda A.Fokin VV. Chem. Rev. 2009, 109: 725 -
8e
Gruttadauria M.Giacalone F.Noto R. Adv. Synth. Catal. 2009, 351: 33 -
8f
Paradowska J.Stodulski M.Mlynarski J. Angew. Chem. Int. Ed. 2009, 48: 4288 ; Angew. Chem. 2009, 121, 4352 -
8g
For ring opening in water, see also ref. 7a-d,h,i.
-
9a
Carreño MC. Chem. Rev. 1995, 95: 1717 -
9b
Fernández I.Khiar N. Chem. Rev. 2003, 103: 3651 - For selected examples, see:
-
10a
Di Furia F.Modena G.Seraglia R. Synthesis 1984, 325 -
10b
Pitchen P.Duñach E.Desmukh MN.Kagan HB. J. Am. Chem. Soc. 1984, 106: 8188 -
10c
Palucki M.Hanson P.Jacobsen EN. Tetrahedron Lett. 1992, 33: 7111 -
10d
Komatsu N.Hashizume M.Sugita T.Uemura S. J. Org. Chem. 1993, 58: 4529 -
10e
Bolm C.Bienewald F. Angew. Chem., Int. Ed. Engl. 1995, 34: 2640 ; Angew. Chem. 1995, 107, 2883 -
10f
Kokubo C.Katsuki T. Tetrahedron 1996, 52: 13895 -
10g
Lattanzi A.Bonadies F.Senatore A.Soriente A.Scettri A. Tetrahedron: Asymmetry 1997, 8: 2473 -
10h
Gunaratne HQN.McKervey MA.Feutren S.Finlay J.Boyd J. Tetrahedron Lett. 1998, 39: 5655 -
10i
Legros J.Bolm C. Angew. Chem. Int. Ed. 2004, 43: 4225 ; Angew. Chem. 2004, 116, 4321 -
10j
Drago C.Caggiano L.Jackson RFW. Angew. Chem. Int. Ed. 2005, 44: 7221 ; Angew. Chem. 2005, 117, 7387 -
10k
Legros J.Bolm C. Chem. Eur. J. 2005, 11: 1086 -
10l
Mba M.Prins LJ.Licini G. Org. Lett. 2007, 9: 21 -
10m
Egami H.Katsuki T. J. Am. Chem. Soc. 2007, 129: 8940 -
10n
Zeng Q.-L.Tang H.-Y.Zhang S.Liu J.-C. Chin. J. Chem. 2008, 26: 1435 -
10o
Sahoo S.Kumar P.Lefebvre F.Halligudi SB. J. Catal. 2009, 262: 111 - For metal-free procedures of sulfoxidation, see:
-
11a
Tohma H.Takizawa S.Watanabe H.Fukuoka Y.Maegawa T.Kita Y. J. Org. Chem. 1999, 64: 3519 -
11b
Bethell D.Page PCB.Vahedi H. J. Org. Chem. 2000, 65: 6756 -
11c
Imada Y.Iida H.Ono S.Murahashi S.-I. J. Am. Chem. Soc. 2003, 125: 2868 -
11d
Salgaonkar PD.Shukla VG.Akamanchi KG. Synth. Commun. 2005, 35: 2805 -
11e
Hong-Bing J.Xiao-Fang H.Dong-Po S.Zhong L. Russ. J. Org. Chem. 2006, 42: 959 -
11f
Baxová L.Cibulka R.Hampl F. J. Mol. Catal. A: Chem. 2007, 277: 53 -
11g
Shi F.Tse MK.Kaiser HM.Beller M. Adv. Synth. Catal. 2007, 349: 2425 -
11h
del Río RE.Wang B.Achab S.Bohé L. Org. Lett. 2007, 9: 2265 -
11i
Golchoubian H.Hosseinpoor F. Molecules 2007, 12: 304 -
11j
Xiong Z.-G.Zhang J.Hu X.-M. Appl. Catal., A 2008, 334: 44 -
11k
Russo A.Lattanzi A. Adv. Synth. Catal. 2009, 351: 521 -
13a
Overman LE.Flippin LA. Tetrahedron Lett. 1981, 22: 195 -
13b
Woodgate PD.Singh Y.Rickard CEF.
J. Organomet. Chem. 1998, 560: 197 -
13c
Periasamy M.Kumar NS.Sivakumar S.Rao VD.Ramanathan CR.Venkatraman L. J. Org. Chem. 2001, 66: 3828 -
13d
Carrée F.Gil R.Collin J. Org. Lett. 2005, 7: 1023 -
13e
Kureshy RI.Singh S.Khan NH.Abdi SHR.Agrawal S.Mayani VJ.Jasra RV. Tetrahedron Lett. 2006, 47: 5277 -
13f
Bonollo S.Fringuelli F.Pizzo F.Vaccaro L. Synlett 2008, 1574 -
13g
Kureshy RI.Prathap KJ.Agrawal S.Khan NH.Abdi SHR.Jasra RV. Eur. J. Org. Chem. 2008, 18: 3118 -
13h
Hosseini-Sarvari M. Can. J. Chem. 2008, 86: 65
References and Notes
General Procedure
for the Aminolysis of 1,2-Epoxides
A mixture of epoxide
(0.31 mmol, 1 equiv), amine (2 equiv), and N-formyl-l-proline (0.1 equiv) in H2O
(150 µL) was stirred at r.t. for 24 or 48 h. The reaction
mixture was diluted with H2O (1.5 mL) and extracted with
CH2Cl2 (3 × 2 mL). The
combined organic layers were washed with brine (2 mL), dried (Na2SO4),
and the solvent was removed under reduced pressure. The residue
was purified by chromatog-raphy (SiO2, PE-EtOAc)
to provide the desired β-amino alcohols in yields given
in Table
[²]
. Products
from the entries 1-5 and 7-13 are known compounds.
Their constitution was ascertained by comparison of spectroscopic
data with reported literature data.7h, ¹³ β-Amino
alcohol from entry 6 is a new compound, and its characterization
data are reported below.
¹H NMR (300
MHz, DMSO-d
6): δ = 7.26
(t, 1 H, J = 7.5 Hz),
6.29-6.35 (m, 2 H), 5.65 (br s., 1 H), 3.24-3.45
(m, 2 H), 2.23 (s, 3 H), 1.85-1.96 (m, 2 H), 1.60-1.63
(m, 2 H), 1.08-1.22 (m, 4 H) ppm. ¹³C
NMR (75 MHz, DMSO-d
6):
δ = 158.33,
154.56, 137.41, 110.26, 105.50, 73.21, 56.18, 34.20, 30.97, 24.13,
23.71 ppm. MS (MALDI): m/z = 207 [M + H]+;
the exact molecular mass m/z = 206.1419 ± 1.7 ppm [M+] was
confirmed by HRMS (EI, 70 eV).
A Typical Procedure for the Oxidation of Methyl Phenyl Sulfide To a solution of catalyst (0.048 mmol) in a solvent (500 µL) methyl phenyl sulfide (0.242 mmol) was added at r.t. To this mixture 30% H2O2 (29.6 µL, 1.2 equiv) was added in one portion and stirred for 24 h at r.t. After quenching the reaction with Na2SO3, the conversion was determined by GC analysis using hexadecane 99% (30 µL) as internal standard. The yield of isolated product was obtained directly by column chromatography (PE-EtOAc, 1:1). The isolated methyl phenyl sulfoxide was identified through comparison of ¹H NMR spectra with literature data. See ref. 10g,k,m.