Synlett 2010(13): 2009-2013  
DOI: 10.1055/s-0030-1258487
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Chemical Synthesis with Inductively Heated Copper Flow Reactors

Sascha Ceylana, Tobias Klandeb, Carla Vogtb, Carsten Friesec, Andreas Kirschning*a
a Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany
e-Mail: andreas.kirschning@oci.uni-hannover.de;
b Institute of Inorganic and Analytical Chemistry, Leibniz Universität Hannover, Callinstr. 1, 30167 Hannover, Germany
c PIT - Plasma Induction Technology, Lorettostr. 20, 40219 Düsseldorf, Germany
Further Information

Publication History

Received 26 April 2010
Publication Date:
09 July 2010 (online)

Abstract

Inductively heated copper wire inside a flow microreactor can serve as a source for a catalytic copper species that promotes 1,3-dipolar cycloadditions of alkynes with in situ formed azides to yield 1,2,3-triazoles. The same setup was used to carry out decarboxylations of 2-alkynoic acids and for the intramolecular C-O coupling of 2′-bromobiphenyl-2-carboxylic acid.

    References and Notes

  • 1 Kirschning A. Solodenko W. Mennecke K. Chem. Eur. J.  2006,  12:  5972 
  • 2a Larhed M. Hallberg A. Drug Discovery Today  2001,  6:  406 
  • 2b Bogdal D. Loupy A. Org. Process Res. Dev.  2008,  12:  710 
  • 2c Kappe CO. Chem. Soc. Rev.  2008,  37:  1127 
  • 3a Welton T. Chem. Rev.  1999,  99:  2071 
  • 3b Wasserscheidt P. Keim W. Angew. Chem. Int. Ed.  2000,  39:  3772 
  • 3c Sheldon R. Chem. Commun.  2001,  2399 
  • 3d Dupont J. de Souza RF. Suarez PAZ. Chem. Rev.  2002,  102:  3667 
  • 3e Parvulescu VI. Hardacre C. Chem. Rev.  2007,  107:  2615 
  • 3f Tzschucke CC. Markert C. Bannwarth W. Angew. Chem. Int. Ed.  2002,  41:  3964 
  • 3g Ionic Liquids   Wasserscheidt P. Welton T. Wiley-VCH; Weinheim: 2008. 
  • Selected reviews on flowthrough systems in organic synthesis:
  • 4a Jas G. Kirschning A. Chem. Eur. J.  2003,  9:  5708 
  • 4b Kirschning A. Jas G. In Immobilized Catalysts, Topics in Current Chemistry   Vol. 242:  Kirschning A. Springer; Berlin/Heidelberg: 2004.  p.209-239  
  • 4c Baxendale IR. Ley SV. In New Avenues to Efficient Chemical Synthesis: Emerging Technologies   Seeberger PH. Blume T. Springer; Berlin/Heidelberg: 2007.  p.151-185  
  • 4d Baxendale IR. Hayward JJ. Lanners S. Ley SV. Smith CD. In Microreactors in Organic Synthesis and Catalysis   Wirth T. Wiley-VCH; Weinheim: 2008.  Chap. 4.2. p.84-122  
  • 4e Ahmed-Omed B. Brandt JC. Wirth T. Org. Biomol. Chem.  2007,  5:  733 
  • 4f Mak XY. Laurino P. Seeberger PH. Beilstein J. Org. Chem.  2009,  19 
  • 4g Wiles C. Watts P. Eur. J. Org. Chem.  2008,  10:  1655 
  • 4h Ley SV. Baxendale IR. CHIMIA  2008,  62:  162 
  • 4i Ahmed-Omer B. Brandt JC. Wirth T. Org. Biomol. Chem.  2007,  5:  733 
  • 4j Ceylan S. Kirschning A. In Recoverable and Recyclable Catalysts   Benaglia M. John Wiley and Sons; Chichester: 2009.  Chap. 13. p.379-411  
  • 4k Yoshida J. Nagaki A. Yamada T. Chem. Eur. J.  2008,  14:  7450 
  • 4l Fukuyama T. Rahman MT. Sato M. Ryu I. Synlett  2008,  151 
  • 4m Mason BP. Price KE. Steinbacher JL. Bogdan AR. McQuade DT. Chem. Rev.  2007,  107:  2300 
  • Reviews on immobilised catalysts:
  • 5a In Immobilized Catalysts, Topics in Current Chmistry   Vol. 242:  Kirschning A. Springer; Berlin/Heidelberg: 2004. 
  • 5b Solodenko W. Frenzel T. Kirschning A. In Polymeric Materials in Organic Synthesis and Catalysis   Buchmeiser MR. Wiley-VCH; Weinheim: 2003. 
  • 5c McNamara CA. Dixon MJ. Bradley M. Chem. Rev.  2002,  102:  3275 
  • 5d McMorn P. Hutchings GJ. Chem. Soc. Rev.  2004,  33:  108 
  • 6a Kunz U. Kirschning A. Altwicker C. Solodenko W. J. Chromatogr., A  2003,  1006:  241 
  • 6b Kunz U. Schönfeld H. Solodenko W. Jas G. Kirschning A. Ind. Eng. Chem. Res.  2005,  44:  8458 
  • 6c Kunz U. Kirschning A. Wen H.-L. Solodenko W. Cecillia R. Kappe CO. Turek T. Catal. Today  2005,  105:  318 
  • 7a Kirschning A. Altwicker C. Dräger G. Harders J. Hoffmann N. Hoffmann U. Schönfeld H. Solodenko W. Kunz U. Angew. Chem. Int. Ed.  2001,  40:  3995 
  • 7b Solodenko W. Kunz U. Kirschning A. Bioorg. Med. Chem. Lett.  2002,  12:  1833 
  • 8a Kunz U. Leue S. Stuhlmann F. Sourkouni-Argirusi G. Wen H. Jas G. Kirschning A. Eur. J. Org. Chem.  2004,  3601 
  • 8b Kirschning A. Mennecke K. Kunz U. Michrowska A. Grela K. J. Am. Chem. Soc.  2006,  128:  13261 
  • 8c Solodenko W. Jas G. Kunz U. Kirschning A. Synthesis  2007,  583 
  • 8d Dräger G. Kiss C. Kunz U. Kirschning A. Org. Biomol. Chem.  2007,  5:  3657 
  • 8e Kirschning A. Mennecke K. Solodenko W. Synthesis  2008,  1589 
  • 8f Mennecke K. Kirschning A. Synthesis  2008,  3267 
  • 9 Mennecke K. Cecilia R. Glasnov TN. Gruhl S. Vogt C. Feldhoff A. Larrubia Vargas MA. Kappe CO. Kunz U. Kirschning A. Adv. Synth. Catal.  2008,  350:  717 
  • 10a Ceylan S. Friese C. Lammel Ch. Mazac K. Kirschning A. Angew. Chem. Int. Ed.  2008,  47:  8950 ; Angew. Chem. 2008, 120, 9083
  • 10b Wegner J. Ceylan S. Friese C. Kirschning A. Eur. J. Org. Chem.  2010, in press
  • 11a Lu A.-H. Salabas EL. Schüth F. Angew. Chem. Int. Ed.  2007,  46:  1222 ; Angew. Chem. 2007, 119, 1242
  • 11b Jun Y.-W. Choi J.-S. Cheon J. Chem. Commun.  2007,  1203 
  • 11c Zhang XK. Li YF. XiaoJ Q. Wetzel ED. J. Appl. Phys.  2003,  93:  7124 
  • 12 Hiergeist R. Andrä W. Buske N. Hergt R. Hilger I. Richter U. Kaiser WJ. J. Magn. Magn. Mater.  1999,  201:  420 
  • 13 Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  24:  5400 
  • 14 Tornøe CW. Christensen C. Meldal M. J. Org. Chem.  2002,  67:  3057 
  • 15a Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed.  2001,  40:  2004 
  • 15b Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • 16 Smith CD. Baxendale IR. Lanners S. Hayward JJ. Smith SC. Ley SV. Org. Biomol. Chem.  2007,  5:  1559 
  • 17 Bogdan AR. Sach NW. Adv. Synth. Catal.  2009,  351:  849 
  • 21 Kolarovic A. Faberova Z. J. Org. Chem.  2009,  74:  7199 
  • 22 Trost BM. Weiss AH. Org. Lett.  2006,  8:  4461 
  • 23a Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 23b Wolter M. Nordmann G. Buchwald SL. Org. Lett.  2002,  4:  973 
  • 23c Liebeskind SL. Srogl J. Org. Lett.  2002,  4:  979 
  • 24 Thasana N. Worayuthakarn R. Kradanrat P. John E. Young L. Ruchirawat S. J. Org. Chem.  2007,  72:  9379 
18

Quadrapure TU is commercially available from Sigma-Aldrich.

19

Hazard warning: Aliphatic azides are regarded to be potentially explosive. Not for all azides that can occur as byproducts in the ‘click’ chemistry reactions data are available in the literature. We never encountered any hazards during these studies. However, this observation does not exclude the possibility of explosions.

20

Typical Procedure for Triazole Syntheses
A glass reactor (12 cm length and 8.5 mm internal diameter) was filled with copper wire (ca. 24 g) and incased with the inductor. The reactor (void volume: 2 mL) was connected to the pump and at the outlet side to a scavenger cartridge which was filled with QuadrapureTM TU. The collection vial was placed behind the scavenger cartridge. The system was flushed with a DMF-H2O mixture (5:1), and the temperature was adjusted to 100 ˚C. After the flow (flow rate 0.2 mL/min) and temperature values reached a steady state a solution of bromide 4 (0.25 M), phenylacetylene (1, 0.125), and sodium azide (0.25 M, higher concentrations led to blockage of the system due to precipitation) in DMF-H2O was pumped through the system (residence time approx. 10 min). After collection of the crude product, the mixture was diluted with H2O, extracted with EtOAc, and dried (MgSO4). After evaporation of the solvent the crude product was purified by flash chromatography on silica gel to yield compound 5 in quantitative yield as a slightly yellow solid.

25

Typical Procedure for the Catalytic Decarboxylation
A glass reactor (12 cm length and 8.5 mm internal diameter) was filled with copper wire (ca. 24 g) and incased with the inductor. The reactor (void volume: 2 mL) was connected to the pump and at the outlet side to a scavenger cartridge which was filled with QuadrapureTM TU. The collection vial was placed behind the scavenger cartridge. The system was flushed with MeCN, and the temperature was adjusted to 60 ˚C. After the flow (flow rate 0.1 mL/min) and temperature values reached a steady state a solution of 2-alkynoic acid 13 (0.1 M) in MeCN was pumped through the system (residence time approx. 20 min). After collection of the crude product, the solvent was evaporated in vacuo, and the crude material was purified by flash chromatography on silica gel to yield compound 14 in 93% yield as a yellow oil.

26

Synthesis of Benozopyranone 18
A PEEK reactor (12 cm length and 8.5 mm internal diameter) was filled with copper wire (ca. 24 g) and incased with the inductor. The reactor (void volume: 2 mL) was connected to the pump and on the outlet side to a back pressure device (6.9 bar) which led to a scavenger cartridge which was filled with QuadrapureTM TU. Behind the scavenger cartridge the collection vial was placed. The system was flushed with DMF, and the temperature was adjusted to 200 ˚C. After the flow (flow rate 0.1 mL/min) and temperature values reached a steady state a solution of bromo acid 17 (0.04 M) in DMF was pumped through the system (residence time approx. 20 min). After collection of the crude product, the mixture was diluted with H2O, extracted with EtOAc, and dried (MgSO4). After evaporation of the solvent in vacuo the crude product was purified by flushing through a short pad of silica to yield compound 18 in 95% yield as a pale brownish solid.