Synlett 2013; 24(15): 1953-1958
DOI: 10.1055/s-0033-1339482
letter
© Georg Thieme Verlag Stuttgart · New York

Simple and General Procedure for the Synthesis of α,β-Alkynyl Ketones from Nitriles Using Alkynyldimethylaluminum Reagents

Balaji L. Korbad
Department of Life Chemistry, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk 712-702, Korea   Fax: +82(53)8503728   eMail: leeshh@cu.ac.kr
,
Sang-Hyeup Lee*
Department of Life Chemistry, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk 712-702, Korea   Fax: +82(53)8503728   eMail: leeshh@cu.ac.kr
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 29. Mai 2013

Accepted after revision: 01. Juli 2013

Publikationsdatum:
14. August 2013 (online)


Abstract

A simple and efficient approach for the synthesis of α,β-alkynyl ketones from nitriles and alkynyldimethylaluminum reagents, derived from trimethylaluminum and alkynes, is described. This methodology provides access to a wide range of α,β-alkynyl ketones with aliphatic, aromatic, and heteroaromatic substituents in moderate to high yield (53–90%). In the cases of aryl-substituted nitriles, the product can also be obtained as α,β-alkynyl N-H ket­imines in high yield (88–93%).

Supporting Information

 
  • References and Notes

  • 8 Shen Q, Huang W, Wang J, Zhou X. Organometallics 2008; 27: 301
  • 12 Sasaki M, Hatta M, Tanino K, Miyashita M. Tetrahedron Lett. 2004; 45: 1911
  • 13 Blanchet J, Bonin M, Chiaroni A, Micouin L, Riche C, Husson H.-P. Tetrahedron Lett. 1999; 40: 2935
  • 14 Wang B, Bonin M, Micouin L. Org. Lett. 2004; 6: 3481
  • 15 Wang B, Bonin M, Micouin L. J. Org. Chem. 2005; 70: 6126
  • 16 Miyashita K, Tsunemi T, Hosokawa T, Ikejiri M, Imanishi T. Tetrahedron Lett. 2007; 48: 3829
  • 17 Jackowski O, Lecourt T, Micouin L. Org. Lett. 2011; 13: 5664
  • 19 Korbad BL, Lee S.-H. Bull. Korean Chem. Soc. 2013; 34: 1266
  • 20 General Experimental Procedure for the Synthesis of Ketone 4aa (Table 2, Entry 1) and N-H Ketimine 3aa (Table 3, Entry 1) The alane (alkynyldimethylaluminum) solution 2 was prepared according to the procedure described in ref. 11b. Alane 2a solution (1.42 mL, 1.4 M in toluene, 2.0 mmol) was added dropwise to a solution of nitrile 1a (0.103 g, 1.0 mmol) in toluene (4 mL). The resulting reaction mixture was stirred at 60 °C for 6 h, and the progress of the reaction was monitored by TLC. After cooling, the reaction was quenched by pouring of the reaction mixture into a slurry of Merck silica gel 60 (10 g, 230–400 mesh) in CHCl3 (100 mL). After being stirred for 12 h, the resultant mixture was filtered and washed with CHCl3. The combined filtrate was evaporated in vacuo to provide the crude residue. This was then purified by column chromatography on silica gel using EtOAc–hexanes (1:20) as eluent to provide the ketone 4aa (0.170 g, 0.85 mmol, 85%) as colorless oil. To synthesize N-H ketimine 3aa as product, the reaction was performed under the same reaction condition as described above. Then, the reaction mixture was diluted with THF (5 mL), and quenched with careful addition of a THF–H2O mixture (5 mL, 8:2). Then the resulting mixture was stirred for 20 min, filtered through Celite, and washed with THF. The combined filtrate was evaporated to dryness to provide the crude product, which then purified by column chromatography on silica gel using EtOAc–hexanes (1:9) containing 3% Et3N as eluent to provide the N-H ketimine 3aa (0.180 g, 0.90 mmol, 90%) as colorless oil. 1-Phenyloct-2-yn-1-one (4aa) 1H NMR (400 MHz, CDCl3): δ = 8.18–8.09 (m, 2 H), 7.63–7.54 (m, 1 H), 7.51–7.41 (m, 2 H), 2.49 (t, J = 7.2 Hz, 2 H), 1.68 (quint, J = 7.2 Hz, 2 H), 1.50–1.32 (m, 4 H), 0.93 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 178.5, 137.2, 134.1, 129.8, 128.7, 97.1, 79.9, 31.3, 27.7, 22.3, 19.4, 14.1. HRMS (EI+): m/z [M]+ calcd for C14H16O: 200.1201; found: 200.1198. 1-Phenyloct-2-yn-1-imine (3aa) 1H NMR (400 MHz, CDCl3): δ = 10.12 (br s, 1 H), 8.07 (s, 2 H), 7.50–7.30 (m, 3 H), 2.43 (t, J = 7.2 Hz, 2 H), 1.64 (quint, J = 7.2 Hz, 2 H), 1.45–1.27 (m, 4 H), 0.928 (t, J = 7.2 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 160.5, 136.7, 131.2, 128.2, 127.5, 95.1, 78.0, 31.0, 27.8, 22.1, 19.1, 13.9. MS (EI): m/z (%) calcd for C14H17N 199; found: 199 (10) [M]+, 198 (84), 156 (100), 143 (77), 115 (38), 77 (25).
    • 21a Robertson GM. Imines and their N-Substituted Derivatives: NH, NR and N-Haloimines . In Comprehensive Organic Functional Group Transformations . Katritzky AR, Meth-Cohn O, Rees CW. 1st ed., Vol. 3 Elsevier Science; Oxford: 1995: 403
    • 21b Chen G.-M, Brown HC. J. Am. Chem. Soc. 2000; 122: 4217
  • 23 O’Donmell MJ, Polt RL. J. Org. Chem. 1982; 47: 2663 ; and references cited therein
  • 24 Sun Z.-M, Chen S.-P, Zhao P. Chem. Eur. J. 2010; 16: 2619
  • 25 Laouiti A, Rammah MM, Rammah MB, Marrot J, Couty F, Evano G. Org. Lett. 2012; 14: 6
  • 26 Dhudshia B, Tiburcio J, Thadani AN. Chem. Commun. 2005; 5551