Ultraschall Med 2014; 35(05): 422-431
DOI: 10.1055/s-0034-1366113
Review
© Georg Thieme Verlag KG Stuttgart · New York

Ocular Color-Coded Sonography – A Promising Tool for Neurologists and Intensive Care Physicians

Die okuläre Farbduplexsonografie – Ungenutztes Potential für Neurologen und Intensivmediziner
M. Ertl
1   Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg
,
F. Barinka
1   Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg
,
E. Torka
1   Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg
,
M. Altmann
2   Department of Opthalmology, University of Regensburg
,
K. Pfister
3   Department of Surgery, Vascular Surgery and Endovascular Surgery, University of Regensburg,
,
H. Helbig
2   Department of Opthalmology, University of Regensburg
,
U. Bogdahn
1   Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg
,
M. A. Gamulescu
2   Department of Opthalmology, University of Regensburg
,
F. Schlachetzki
1   Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg
› Author Affiliations
Further Information

Publication History

23 February 2013

20 January 2014

Publication Date:
19 March 2014 (online)

Abstract

Ocular color-coded duplex sonography (OCCS), when performed within the safety limits of diagnostic ultrasonography, is an easy noninvasive technique with high potential for diagnosis and therapy in diseases with raised intracranial pressure and vascular diseases affecting the eye. Despite the capabilities of modern ultrasound systems and its scientific validation, OCCS has not gained widespread use in neurological practice. In this review, the authors describe the technique and main parameter settings of OCCS systems to reduce potential risks as thermal or cavitational effects for sensitive orbital structures. Applications of OCCS are the determination of intracranial pressure in emergency medicine, and follow-up evaluations of idiopathic intracranial hypertension and ventricular shunting by measuring the optic nerve sheath diameter. A diameter of 5.7 – 6.0 mm corresponds well with symptomatically increased intracranial pressure (> 20 cmH2O). OCCS also helps to discriminate between different etiologies of central retinal artery occlusion – by visualization of a “spot sign” and Doppler flow analysis of the central retinal artery – and aids the differential diagnosis of papilledema. At the end perspectives are illustrated that combine established ultrasound methods such as transcranial color-coded sonography with OCCS.

Zusammenfassung

Bei der okulären Farbduplexsonografie handelt es sich um eine einfache und sichere Methode zur Diagnose und Therapiesteuerung bei Erkrankungen mit erhöhtem intrakraniellen Druck und vaskulären Augenerkrankungen. Trotz der technischen Möglichkeiten moderner Ultraschallgeräte und der wissenschaftlichen Validierung ist diese Methode in der alltäglichen neurologischen Routinediagnostik bisher wenig bekannt. Inhalt dieses Reviews ist die Beschreibung der Technik und der Geräteeinstellungen zur Risikoreduktion von potentiell schädlichen Effekten auf empfindliche Augenstrukturen durch Erwärmung oder Kavitation sowie die hauptsächlichen klinischen Anwendungsgebiete in der Neurologie und der Neuro-Ophthalmologie. Darunter zählt die Beurteilung eines erhöhten intrakraniellen Drucks in der Intensivmedizin und Verlaufskontrollen bei idiopathischer intrakranieller Hypertension und Kontrolle der Funktion von Ventrikelshunts. Hierbei wird der Optikusnervenscheidendurchmesser bestimmt, wobei Werte ab 5,7 – 6,0 mm gut mit einem symptomatisch erhöhten Hirndruck (> 20 cmH2O) korrelieren. Darüber hinaus ermöglicht die Methode die Differentialdiagnose von Zentralarterienverschlüssen (durch den Befund eines „Spot Signs“ und die Dopplerflussanalyse in der Zentralarterie) und Papillenödemen. Abschließend werden Perspektiven zur Kombination mit etablierten Ultraschallmethoden, wie der transkraniellen Dopplersonografie, beleuchtet.

 
  • References:

  • 1 Friedman DI, Jacobson DM. Diagnostic criteria for idiopathic intracranial hypertension. Neurology 2002; 59: 1492-1495
  • 2 Rosenfeld E, Jenderka KV, Kopp A et al. How perfect are you with defective probes? Information on the results of the mini-trial on technical quality assurance during the “Ultraschall 2012” conference in Davos. Ultraschall in Med 2013; 34: 185-188
  • 3 Toms DA. The mechanical index, ultrasound practices, and the ALARA principle. J Ultrasound Med 2006; 25: 560-561 author reply 1–2.
  • 4 Lizzi FL, Coleman DJ, Driller J et al. Effects of pulsed ultrasound on ocular tissue. Ultrasound Med Biol 1981; 7: 245-252
  • 5 Food and Drug Administration: Information for Manufacturers Seeking Clearance of Diagnostic Ultrasound Systems and Transducers. 2008 Available from: http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm070856.htm
  • 6 Section 7--discussion of the mechanical index and other exposure parameters. American Institute of Ultrasound in Medicine. J Ultrasound Med 2000; 19: 143-148 54–68.
  • 7 Tranquart F, Berges O, Koskas P et al. Color Doppler imaging of orbital vessels: personal experience and literature review. J Clin Ultrasound 2003 ; 31: 258-273
  • 8 Bauerle J, Nedelmann M. Sonographic assessment of the optic nerve sheath in idiopathic intracranial hypertension. J Neurol 2011; 258: 2014-2019
  • 9 Bauerle J, Lochner P, Kaps M et al. Intra- and interobsever reliability of sonographic assessment of the optic nerve sheath diameter in healthy adults. J Neuroimaging 2012; 22: 42-45
  • 10 Rohr A, Riedel C, Reimann G et al. Pseudotumor cerebri: quantitative in-vivo measurements of markers of intracranial hypertension. Rofo 2008; 180: 884-890
  • 11 Kelman SE, Sergott RC, Cioffi GA et al. Modified optic nerve decompression in patients with functioning lumboperitoneal shunts and progressive visual loss. Ophthalmology 1991; 98: 1449-1453
  • 12 Killer HE, Jaggi GP, Flammer J et al. Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional?. Brain 2007; 130: 514-520
  • 13 Seggia JC, De Menezes ML. Pseudotumor cerebri without optic papilledema. Arq Neuropsiquiatr 1993; 51: 511-518
  • 14 Friedman DI. Papilledema and pseudotumor cerebri. Ophthalmol Clin North Am 2001; 14: 129-147
  • 15 Lueck C, McIlwaine G. Interventions for idiopathic intracranial hypertension. Cochrane Database Syst Rev 2002; CD003434. Review
  • 16 Wall M, White 2nd WN. Asymmetric papilledema in idiopathic intracranial hypertension: prospective interocular comparison of sensory visual function. Invest Ophthalmol Vis Sci 1998; 39: 134-142
  • 17 Tamburrelli C, Salgarello T, Caputo CG et al. Ultrasonographic evaluation of optic disc swelling: comparison with CSLO in idiopathic intracranial hypertension. Invest Ophthalmol Vis Sci 2000; 41: 2960-2966
  • 18 Winkler F, Kastenbauer S, Yousry TA et al. Discrepancies between brain CT imaging and severely raised intracranial pressure proven by ventriculostomy in adults with pneumococcal meningitis. J Neurol 2002; 249: 1292-1297
  • 19 The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Recommendations for intracranial pressure monitoring technology. J Neurotrauma 2000; 17: 497-506
  • 20 Antonelli M, Azoulay E, Bonten M et al. Year in review in Intensive Care Medicine, 2008: I. Brain injury and neurology, renal failure and endocrinology, metabolism and nutrition, sepsis, infections and pneumonia. Intensive Care Med 2009; 35: 30-44
  • 21 Galetta S, Byrne SF, Smith JL. Echographic correlation of optic nerve sheath size and cerebrospinal fluid pressure. J Clin Neuroophthalmol 1989; 9: 79-82
  • 22 Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg 1997; 87: 34-40
  • 23 Tayal VS, Neulander M, Norton HJ et al. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med 2007; 49: 508-514
  • 24 Tsung JW, Blaivas M, Cooper A et al. A rapid noninvasive method of detecting elevated intracranial pressure using bedside ocular ultrasound: application to 3 cases of head trauma in the pediatric emergency department. Pediatr Emerg Care 2005; 21: 94-98
  • 25 Ballantyne SA, O'Neill G, Hamilton R et al. Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound 2002; 15: 145-149
  • 26 Soldatos T, Karakitsos D, Chatzimichail K et al. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care 2008; 12: R67
  • 27 Geeraerts T, Launey Y, Martin L et al. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med 2007; 33: 1704-1711
  • 28 Watanabe A, Kinouchi H, Horikoshi T et al. Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg 2008; 109: 255-258
  • 29 Geeraerts T, Merceron S, Benhamou D et al. Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med 2008; 34: 2062-2067
  • 30 Dubourg J, Javouhey E, Geeraerts T et al. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 2011;
  • 31 Helmke K, Hansen HC. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension II. Patient study. Pediatr Radiol 1996; 26: 706-710
  • 32 Harrer JU, Eyding J, Ritter M et al. The potential of neurosonography in neurological emergency and intensive care medicine: monitoring of increased intracranial pressure, brain death diagnostics, and cerebral autoregulation- part 2. Ultraschall in Med 2012; 33: 320-331
  • 33 Lieb WE, Cohen SM, Merton DA et al. Color Doppler imaging of the eye and orbit. Technique and normal vascular anatomy. Arch Ophthalmol 1991; 109: 527-531
  • 34 Brown GC, Magargal LE. Central retinal artery obstruction and visual acuity. Ophthalmology 1982; 89: 14-19
  • 35 Gold D. Retinal arterial occlusion. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 1977; 83 (3 P+1) 83 OP392-408
  • 36 McFadzean RM. Ischemic optic neuropathy and giant cell arteritis. Curr Opin Ophthalmol 1998; 9: 10-17
  • 37 Biousse V, Calvetti O, Bruce BB et al. Thrombolysis for central retinal artery occlusion. J Neuroophthalmol 2007; 27: 215-230
  • 38 Pfaffenbach DD, Hollenhorst RW. Morbidity and survivorship of patients with embolic cholesterol crystals in the ocular fundus. Trans Am Ophthalmol Soc 1972; 70: 337-349
  • 39 Schlachetzki F, Boy S, Bogdahn U et al. The Retrobulbar "Spot Sign" – Ocular Sonography for the Differential Diagnosis of Temporal Arteritis and Sudden Blindness. Ultraschall in Med 2010; 31: 539-542
  • 40 Foroozan R, Savino PJ, Sergott RC. Embolic central retinal artery occlusion detected by orbital color Doppler imaging. Ophthalmology 2002; 109: 744-747 discussion 7–8.
  • 41 Ertl M, Altmann M, Torka E et al. The Retrobulbar "Spot Sign" as a Discriminator Between Vasculitic and Thrombo-Embolic Affections of the Retinal Blood Supply. Ultraschall in Med 2012; 33: E263-E677
  • 42 Hunder GG, Bloch DA, Michel BA et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990; 33: 1122-1128
  • 43 Schmidt WA, Kraft HE, Vorpahl K et al. Color duplex ultrasonography in the diagnosis of temporal arteritis. N Engl J Med 1997; 337: 1336-1342
  • 44 Arida A, Kyprianou M, Kanakis M et al. The diagnostic value of ultrasonography-derived edema of the temporal artery wall in giant cell arteritis: a second meta-analysis. BMC Musculoskelet Disord 2010; 11: 44
  • 45 Arning C, Widder B, von Reutern GM et al. Revision of DEGUM ultrasound criteria for grading internal carotid artery stenoses and transfer to NASCET measurement. Ultraschall in Med 2010; 31: 251-257
  • 46 Muller M, Wessel K, Mehdorn E et al. Carotid artery disease in vascular ocular syndromes. J Clin Neuroophthalmol 1993; 13: 175-180
  • 47 Paivansalo M, Riihelainen K, Rissanen T et al. Effect of an internal carotid stenosis on orbital blood velocity. Acta Radiol 1999; 40: 270-275
  • 48 Mawn LA, Hedges 3rd TR, Rand W et al. Orbital color Doppler imaging in carotid occlusive disease. Arch Ophthalmol 1997; 115: 492-496
  • 49 Davis PL, Jay WM. Optic nerve head drusen. Semin Ophthalmol 2003; 18: 222-242
  • 50 Gaynes PM, Towle PA. Hemorrhage in hyaline bodies (drusen) of the optic disc during an attack of migraine. Am J Ophthalmol 1967; 63: 1693-1696
  • 51 Dubost C, Le Gouez A, Zetlaoui PJ et al. Increase in optic nerve sheath diameter induced by epidural blood patch: a preliminary report. Br J Anaesth 2011; 107: 627-630
  • 52 Bauerle J, Gizewski ER, Stockhausen KV et al. Sonographic Assessment of the Optic Nerve Sheath and Transorbital Monitoring of Treatment Effects in a Patient with Spontaneous Intracranial Hypotension: Case Report. J Neuroimaging 2013; 23: 237-239
  • 53 Ekaterina Titianova SC, Karakaneva S, Stamenov B. Four-dimensional ultrasound imaging in neuro-ophthalmology. Perspectives in Medicine September 2012; 86-88