RSS-Feed abonnieren
DOI: 10.1055/s-0034-1380170
Palladium-Catalyzed Asymmetric Decarboxylative Cycloaddition of Vinylethylene Carbonates with Electrophiles: Construction of Quaternary Stereocenters
Publikationsverlauf
Received: 06. Dezember 2014
Accepted after revision: 12. Januar 2015
Publikationsdatum:
12. Februar 2015 (online)
Abstract
The enantioselective construction of quaternary stereocenters still remains significant challenge in organic synthesis. Herein, an efficient synthetic strategy for the construction of quaternary stereocenters via palladium-catalyzed asymmetric decarboxylative cycloaddition of vinylethylene carbonates (VEC) with unsaturated electrophiles is highlighted. The processes that enable rapid access to methylene acetal protected tertiary vinylglycols, carbonyl-protected β-substituted β-vinylglycinols, and multifunctionalized tetrahydrofurans bearing continuous tertiary and vicinal all-carbon quaternary stereocenters in high yields with high levels of stereoselectivities.
-
References
- 1a Wang S.-H, Li B.-S, Tu Y.-Q. Chem. Commun. 2014; 50: 2393
- 1b Shimizu M. Angew. Chem. Int. Ed. 2011; 50: 5998
- 1c Das JP, Marek I. Chem. Commun. 2011; 47: 4593
- 1d Trost BM, Jiang C. Synthesis 2006; 369
- 1e Christoffers J, Baro A. Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis. Wiley-VCH; Weinheim: 2005
- 2a Shibasaki M, Kanai M. Chem. Rev. 2008; 108: 2853
- 2b Cozzi PG, Hilgraf R, Zimmermann N. Eur. J. Org. Chem. 2007; 5969
- 2c Riant O, Hannedouche J. Org. Biomol. Chem. 2007; 5: 873
- 3a Kolb HC, Sharpless KB In Transition Metals for Organic Synthesis . Beller M, Bolm C. Wiley-VCH; Weinheim: 2004. 2nd ed., 275
- 3b Becker H, Sharpless KB In Asymmetric Oxidation Reactions . Katsuki T. Oxford University Press; Oxford: 2001: 81
- 4a Wong OA, Shi Y. Chem. Rev. 2008; 108: 3958
- 4b Katsuki T. Adv. Synth. Catal. 2002; 344: 131
- 4c Johnson RA, Sharpless KB In Catalytic Asymmetric Synthesis . Ojima I. Wiley-VCH; Weinheim: 2000. 2nd ed. 231
- 5a Russo A, Fusco CD, Lattanzi A. RSC Adv. 2012; 2: 385
- 5b Guillena G, Ramón DJ. Curr. Org. Chem. 2011; 15: 296
- 5c Bella M, Gasperi T. Synthesis 2009; 1583
- 5d Xu C, Zhang L, Luo S. Angew. Chem. Int. Ed. 2014; 53: 4149
- 5e Maji B, Baidya M, Yamamoto H. Chem. Sci. 2014; 5: 3941
- 5f Deng Q.-H, Bleith T, Wadepohl H, Gade LH. J. Am. Chem. Soc. 2013; 135: 5356
- 5g Frazier CP, Sandoval D, Palmer LI, de Alaniz JR. Chem. Sci. 2013; 4: 3857
- 5h Baidya M, Griffin KA, Yamamoto H. J. Am. Chem. Soc. 2012; 134: 18566
- 5i Zhu C.-L, Zhang F.-G, Meng W, Nie J, Cahard D, Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 5869
- 6a Yang G, Shen C, Zhang W. Angew. Chem. Int. Ed. 2012; 51: 9141
- 6b Liu Q, Wen K, Zhang Z, Wu Z, Zhang YJ, Zhang W. Tetrahedron 2012; 68: 5209
- 6c Wang F, Yang G, Zhang YJ, Zhang W. Tetrahedron 2008; 64: 9413
- 6d Zhang YJ, Wang F, Zhang W. J. Org. Chem. 2007; 72: 9208
- 6e Trend RM, Ramtohul YK, Stoltz BM. J. Am. Chem. Soc. 2005; 127: 17778
- 6f Uozumi Y, Kato K, Hayashi T. J. Am. Chem. Soc. 1997; 119: 5063
- 7a Hong MS, Kim TW, Jung B, Kang SH. Chem. Eur. J. 2008; 14: 3290
- 7b Jung B, Hong MS, Kang SH. Angew. Chem. Int. Ed. 2007; 46: 2616
- 7c Jung B, Kang SH. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 1471
- 8a Hartwig JF. Allylic Substitution . University Science Books; Sausalito (CA, USA): 2010
- 8b Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 8c Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 9a Trost BM, Shen HC, Dong L, Surivet J.-P, Sylvain C. J. Am. Chem. Soc. 2004; 126: 11966
- 9b Trost BM, Shen HC, Surivet J.-P. J. Am. Chem. Soc. 2004; 126: 12565
- 9c Trost BM, Shen HC, Dong L, Surivet J.-P. J. Am. Chem. Soc. 2003; 125: 9276
- 9d Trost BM, Asakawa N. Synthesis 1999; 1491
- 9e Mizuguchi E, Achiwa K. Chem. Pharm. Bull. 1997; 45: 1209
- 10a Hou X.-L, Sun N. Org. Lett. 2004; 6: 4399
- 10b Sawayama AM, Tanaka H, Wandless TJ. J. Org. Chem. 2004; 69: 8810
- 10c Trost BM, Toste FD. J. Am. Chem. Soc. 1998; 120: 9074
- 11a Trost BM, Jiang C, Hammer K. Synthesis 2005; 3335
- 11b Trost BM, Brown BS, McEachern EJ, Kuhn O. Chem. Eur. J. 2003; 9: 4442
- 11c Trost BM, Jiang C. J. Am. Chem. Soc. 2001; 123: 12907
- 11d Trost BM, Bunt RC, Lemoine RC, Calkins TL. J. Am. Chem. Soc. 2000; 122: 5968
- 11e Trost BM, McEachern EJ, Toste FD. J. Am. Chem. Soc. 1998; 120: 12702
- 12a Shaghafi MB, Grote RE, Jarvo ER. Org. Lett. 2011; 13: 5188
- 12b Larksarp C, Alper H. J. Am. Chem. Soc. 1997; 119: 3709
- 13 For review, see: Weaver JD, Recio AIII, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
- 14a Streuff J, White DE, Virgil SC, Stoltz BM. Nat. Chem. 2010; 2: 192
- 14b Shintani R, Murakami M, Tsuji T, Tanno H, Hayashi T. Org. Lett. 2009; 11: 5642
- 14c Shintani R, Hayashi S.-y, Murakami M, Takeda M, Hayashi T. Org. Lett. 2009; 11: 3754
- 14d Shintani R, Murakami M, Hayashi T. Pure Appl. Chem. 2008; 80: 1135
- 14e Shintani R, Park S, Shirozu F, Murakami M, Hayashi T. J. Am. Chem. Soc. 2008; 130: 16174
- 14f Wang C, Tunge JA. J. Am. Chem. Soc. 2008; 130: 8118
- 14g Shintani R, Murakami M, Hayashi T. J. Am. Chem. Soc. 2007; 129: 12356
- 15a Zhang YJ, Yang JH, Kim SH, Krische MJ. J. Am. Chem. Soc. 2010; 132: 4562
- 15b Trost BM, Aponick A. J. Am. Chem. Soc. 2006; 128: 3931
- 16a Khan A, Zheng R, Kan Y, Ye J, Xing J, Zhang YJ. Angew. Chem. Int. Ed. 2014; 53: 6439
- 16b Khan A, Xing J, Zhao J, Kan Y, Zhang W, Zhang YJ. Chem. Eur. J. 2015; 21: 120
- 16c Khan A, Yang L, Xu J, Jin LY, Zhang YJ. Angew. Chem. Int. Ed. 2014; 53: 11257
- 17a Fujioka H, Senami K, Kubo O, Yahata K, Minamitsuji Y, Maegawa T. Chem. Pharm. Bull. 2010; 58: 426
- 17b Fujioka H, Senami K, Kubo O, Yahata K, Minamitsuji Y, Maegawa T. Org. Lett. 2009; 11: 5138
- 18a Amatore C, Gamez S, Jutand A, Meyer G, Moreno-Maňas M, Morral L, Pleixats P. Chem. Eur. J. 2000; 6: 3372
- 18b Bäckvall J.-E, Byström SE, Nordberg RE. J. Org. Chem. 1984; 49: 4619
- 18c Bäckvall J.-E, Nordberg RE. J. Am. Chem. Soc. 1981; 103: 4959
- 19a Berkowitz DB, Karukurichi KR, de la Salud-Bea R, Maiti G, McFadden JM, Morris ML In ACS Symposium Series 1009 . Soloshonok VA, Izawa K. American Chemical Society; Washington DC: 2009: 288
- 19b Karukurichi KR, de la Salud-Bea R, Jahng WJ, Berkowitz DB. J. Am. Chem. Soc. 2007; 129: 258
- 20a Cativiela C, Díaz-de-Villegas MD. Tetrahedron: Asymmetry 2007; 18: 569
- 20b Kang SH, Kang SY, Lee H-S, Buglass AJ. Chem. Rev. 2005; 105: 4537
- 20c Ohfune Y, Shinada T. Eur. J. Org. Chem. 2005; 5127
- 21 Cox CD, Coleman PJ, Breslin MJ, Whitman DB, Garbaccio RM, Fraley ME, Buser CA, Walsh ES, Hamilton K, Schaber MD, Lobell RB, Tao W, Davide JP, Diehl RE, Abrams MT, South VJ, Huber HE, Torrent M, Prueksaritanont T, Li C, Slaughter DE, Mahan E, Fernandez-Metzler C, Yan Y, Kuo LC, Kohl NE, Hartman GD. J. Med. Chem. 2008; 51: 4239
- 22a Jolit A, Walleser PM, Yap GP. A, Tius MA. Angew. Chem. Int. Ed. 2014; 53: 6180
- 22b Ohmatsu K, Imagawa N, Ooi T. Nat. Chem. 2014; 6: 47
- 22c Ohmatsu K, Ando Y, Ooi T. J. Am. Chem. Soc. 2013; 135: 18706
- 22d Zhang H, Hong L, Kang H, Wang R. J. Am. Chem. Soc. 2013; 135: 14098
- 22e Cao Z.-Y, Wang X, Tan C, Zhao X.-L, Zhou J, Ding K. J. Am. Chem. Soc. 2013; 135: 8197
- 22f Trost BM, Osipiv M. Angew. Chem. Int. Ed. 2013; 52: 9176
- 22g Noole A, Sucman NS, Kabeshov MA, Kanger T, Macaev FZ, Malkov AV. Chem. Eur. J. 2012; 18: 14929
- 22h Trost BM, Malhotra S, Chan WH. J. Am. Chem. Soc. 2011; 133: 7328
- 22i Gao L, Hwang G.-SD. H. J. Am. Chem. Soc. 2011; 133: 20708
- 22j Uyeda C, Rötheli AR, Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 9753
- 22k Du C, Li L, Li Y, Xie Z. Angew. Chem. Int. Ed. 2009; 48: 7853
- 22l DeAngelis A, Dmitrenko O, Yap GP. A, Fox JM. J. Am. Chem. Soc. 2009; 131: 7230
- 22m Trost BM, Cramer N, Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
- 22n Payette JN, Yamamoto H. J. Am. Chem. Soc. 2007; 129: 953
For reviews of enantioselective construction of all-carbon quaternary stereocenters, see:
For reviews, see:
For reviews of the synthesis of tertiary alcohols via asymmetric dihydroxylation of 1,1-disubstituted alkenes, see:
For reviews of the synthesis of tertiary alcohols via asymmetric epoxidation of 1,1-disubstituted alkenes, see:
For recent reviews of the synthesis of tertiary alcohols and α-tertiary amines via asymmetric α-hydroxylation and α-amination of carbonyl compounds, see:
For selected recent examples, see:
For selected examples of the synthesis of tertiary alcohols and α-tertiary amines via asymmetric Wacker-type cyclization, see:
For selected examples of the synthesis of tertiary alcohols and α-tertiary amines via asymmetric desymmetrization benzoylation of 1,3-diols, see:
For selected reviews, see:
For examples of the construction of quaternary stereocenters via Pd-catalyzed asymmetric intramolecular allylic substitution of 3,3-disubstituted allylic electrophiles, see:
For examples of the construction of quaternary stereocenters via Pd-catalyzed asymmetric intermolecular allylic substitution of 3,3-disubstituted allylic electrophiles, see:
For recent examples, see:
Using vinylethylene carbonates as allylic donors for transition-metal-catalyzed asymmetric reactions, see:
When the allylpalladium intermediate with monophosphine ligands [Pd(II) center has a vacant site] was used, the reductive elimination is favored; for the intermediate with bidentate ligands, the back side SN2-type attack is favored in the allylic substitution reactions, see:
For asymmetric catalytic examples of the construction of vicinal all-carbon quaternary stereocenters, see: