Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(19): 2594-2598
DOI: 10.1055/s-0036-1591495
DOI: 10.1055/s-0036-1591495
cluster
Nickel-Catalyzed Decarbonylative Silylation, Borylation, and Amination of Arylamides via a Deamidative Reaction Pathway
Further Information
Publication History
Received: 11 July 2017
Accepted after revision: 25 September 2017
Publication Date:
23 October 2017 (online)
Published as part of the Cluster C–O Activation
Abstract
A nickel-catalyzed decarbonylative silylation, borylation, and amination of amides has been developed. This new methodology allows the direct interconversion of amides to arylsilanes, arylboronates, and arylamines and enables a facile route for carbon–heteroatom bond formations in a straightforward and mild fashion.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591495.
- Supporting Information
-
References and Notes
- 1a Modern Organonickel Chemistry . Tamaru Y. Wiley-VCH; Weinheim: 2005
- 1b Tasker SZ. Standley EA. Jamison TF. Nature 2014; 509: 299
- 2 Wang X. Dai Y. Gong H. Top. Curr. Chem. 2016; 374: 43
- 3 Yamaguchi J. Muto K. Itami K. Top. Curr. Chem. 2016; 374: 55
- 4a Dubbaka SR. Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
- 4b Prokopcov H. Kappe CO. Angew. Chem. Int. Ed. 2009; 48: 2276
- 4c Wang L. Hea W. Yu Z. Chem. Soc. Rev. 2013; 42: 599
- 4d Pana F. Shi Z.-J. ACS Catal. 2014; 4: 280
- 5a Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2010; 111: 1346
- 5b Yu D.-G. Li B.-J. Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
- 5c McGlacken GP. Clarke SL. ChemCatChem 2011; 3: 1260
- 5d Mesganaw T. Garg NK. Org. Process Res. Dev. 2013; 17: 29
- 5e Kozhushkov SI. Potukuchiw HK. Ackermann L. Catal. Sci. Technol. 2013; 3: 562
- 5f Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 5g Tobisu M. Chatani N. Top. Curr. Chem. 2016; 374: 41
- 6 Wang Q. Su Y. Li L. Huang H. Chem. Soc. Rev. 2016; 45: 1257
- 7a Dzik WI. Lange PP. Gooßen L. J. Chem. Sci. 2012; 3: 2671
- 7b Yamaguchi J. Itami K. In Metal-Catalyzed Cross-Coupling Reactions and More . Vol. 3; de Meijere A. Bräse S. Oestreich M. Wiley-VCH; Weinheim: 2014: 1353
- 7c New Trends in Cross-Coupling: Theory and Applications . Colacot TJ. RSC; Cambridge, UK: 2015
- 8a Blaser H.-U. Spencer A. J. Organomet. Chem. 1982; 233: 267
- 8b Obora Y. Tsuji Y. Kawamura T. J. Am. Chem. Soc. 1993; 115: 10414
- 8c Zhao X. Yu Z. J. Am. Chem. Soc. 2008; 130: 8136
- 8d Ye W. Luo N. Yu Z. Organometallics 2010; 29: 1049
- 9a O'Brien EM. Bercot EA. Rovis T. J. Am. Chem. Soc. 2003; 125: 10498
- 9b Gooßen LJ. Paetzold J. Adv. Synth. Catal. 2004; 346: 1665
- 9c Kajita Y. Kurahashi T. Matsubara S. J. Am. Chem. Soc. 2008; 130: 17226
- 9d Jin W. Yu Z. He W. Ye W. Xiao W.-J. Org. Lett. 2009; 11: 1317
- 9e Prakash R. Shekarrao K. Gogoi S. Boruah RC. Chem. Commun. 2015; 51: 9972
- 10a Gooßen LJ. Paetzold J. Angew. Chem. Int. Ed. 2002; 41: 1237
-
10b
Gooßen LJ.
Paetzold J.
Angew. Chem. Int. Ed. 2004; 43: 1095
- 10c Gribkov DV. Pastine SJ. Schnürch M. Sames D. J. Am. Chem. Soc. 2007; 129: 11750
- 10d Okita T. Kumazawa K. Takise R. Muto K. Itami K. Yamaguchi J. Chem. Lett. 2017; 46: 218
- 10e Amaike K. Muto K. Yamaguchi J. Itami K. J. Am. Chem. Soc. 2012; 134: 13573
- 10f Correa A. Cornella J. Martin R. Angew. Chem. Int. Ed. 2013; 52: 1878
-
10g
Meng L.
Kamada Y.
Muto K.
Yamaguchi J.
Itami K.
Angew. Chem., Int. Ed. 2013; 52: 10048
- 10h Hong X. Liang Y. Houk KN. J. Am. Chem. Soc. 2014; 136: 2017
- 10i Lu Q. Yu H. Fu Y. J. Am. Chem. Soc. 2014; 136: 8252
- 10j Muto K. Yamaguchi J. Musaev DG. Itami K. Nat. Commun. 2015; 6: 7508
- 10k Desnoyer AN. Friese FW. Chiu W. Drover MW. Patrick BO. Love JA. Chem. Eur. J. 2016; 22: 4070
- 10l Amaike K. Itami K. Yamaguchi J. Chem. Eur. J. 2016; 22: 4384
- 10m Takise R. Isshiki R. Muto K. Itami K. Yamaguchi J. J. Am. Chem. Soc. 2017; 139: 3340
-
10n
Liu X.
Jia J.
Rueping M.
ACS Catal. 2017; 7: 4491
- 10o Guo L. Chatupheeraphat A. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 11810
- 10p Pu X. Hu J. Zhao Y. Shi Z. ACS Catal. 2016; 6: 6692
- 10q Guo L. Rueping M. Chem. Eur. J. 2016; 22: 16787
- 10r Yue H. Guo L. Liao H.-H. Cai Y. Zhu C. Rueping M. Angew. Chem. Int. Ed. 2017; 56: 4282
-
10s
Chatupheeraphat A.
Liao H.-H.
Lee S.-C.
Rueping M.
Org. Lett. 2017; 19: 4255
- 11a Meng G. Shi S. Szostak M. Synlett 2016; 27: 2530
- 11b Dander JE. Garg NK. ACS Catal. 2017; 7: 1413
- 11c Liu C. Szostak M. Chem. Eur. J. 2017; 23: 7157
- 12a Shi S. Meng G. Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959
- 12b Srimontree W. Chatupheeraphat A. Liao H.-H. Rueping M. Org. Lett. 2017; 19: 3091
- 12c Hu J. Zhao Y. Liu J. Zhang Y. Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
- 12d Dey A. Sasmal S. Seth K. Lahiri GK. Maiti D. ACS Catal. 2017; 7: 433
- 12e Yue H. Guo L. Lee S.-C. Liu X. Rueping M. Angew. Chem. Int. Ed. 2017; 56: 3972
- 12f Simmons BJ. Hoffmann M. Hwang J. Jackl MK. Garg NK. Org. Lett. 2017; 19: 1910
- 12g Hu J. Wang M. Pu X. Shi Z. Nat. Commun. 2017; 8: 14993
- 12h Meng G. Szostak M. Angew. Chem. Int. Ed. 2015; 54: 14518
- 12i Liu C. Meng G. Szostak M. J. Org. Chem. 2016; 81: 12023
- 12j Meng G. Szostak M. Org. Lett. 2016; 18: 796
- 12k Wu H. Liu T. Cui M. Li Y. Jian J. Wang H. Zeng Z. Org. Biomol. Chem. 2017; 15: 536
- 12l Shi S. Szostak M. Org. Lett. 2017; 19: 3095
- 13a Leiendecker M. Hsiao CC. Guo L. Alandini N. Rueping M. Angew. Chem. Int. Ed. 2014; 53: 12912
- 13b Guo L. Leiendecker M. Hsiao C.-C. Baumann C. Rueping M. Chem. Commun. 2015; 51: 1937
- 13c Leiendecker M. Chatupheeraphat A. Rueping M. Org. Chem. Front. 2015; 2: 350
- 13d Liu X. Hsiao C.-C. Kalvet I. Leiendecker M. Guo L. Schoenebeck F. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 6093
- 13e Guo L. Hsiao C.-C. Yue H. Liu X. Rueping M. ACS Catal. 2016; 6: 4438
- 13f Guo L. Liu X. Baumann C. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 15415
- 13g Fan L. Jia J. Hou H. Lefebvre Q. Rueping M. Chem. Eur. J. 2016; 22: 16437
- 13h Yue H. Guo L. Liu X. Rueping M. Org. Lett. 2017; 19: 1788
- 13i Liu X. Yue H. Jia J. Guo L. Rueping M. Chem. Eur. J. 2017; 23: 11771
- 14a Corey JY. Braddock-Wilking J. Chem. Rev. 1999; 99: 175
- 14b Brook M. Silicon in Organic, Organometallic and Polymer Chemistry. Wiley; New York: 2000
- 14c Denmark SE. Sweis RF. Acc. Chem. Res. 2002; 35: 835
- 14d Marciniec B. Coord. Chem. Rev. 2005; 249: 2374
- 14e Nakao Y. Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
- 14f Cheng C. Hartwig JF. Chem. Rev. 2015; 115: 8946
- 15a Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
- 15b Miyaura N. Top. Curr. Chem. 2002; 219: 11
- 15c Miyaura N. Bull. Chem. Soc. Jpn. 2008; 81: 1535
- 16a Showwell GA. Mills JS. Drug Discov. Today 2003; 8: 551
- 16b Denmark SE. Liu JH.-C. Angew. Chem. Int. Ed. 2010; 49: 2978
- 16c Franz AK. Wilson SO. J. Med. Chem. 2013; 56: 388
- 17 Hall DG. Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Wiley-VCH; Weinheim: 2005
- 18a Ricci A. Amino Group Chemistry: From Synthesis to the Life Sciences. Wiley-VCH; Weinheim: 2008
- 18b Lawerence SA. Amines: Synthesis, Properties and Applications . Cambridge University; Cambridge: 2004
- 18c Brown BR. The Organic Chemistry of Aliphatic Nitrogen Compounds . Cambridge University; Cambridge: 2004
- 18d Rappoport Z. The Chemistry of Anilines . Part 1 and 2 John Wiley and Sons; New York: 2007
- 19a Manoso AS. Ahn C. Soheili A. Handy CJ. Correia R. Seganish WM. DeShong P. J. Org. Chem. 2004; 69: 8305
- 19b Pintaric C. Olivero S. Gimbert Y. Chavant PY. Duñach E. J. Am. Chem. Soc. 2010; 132: 11825
- 20a Murata M. Masuda Y. J. Synth. Org Chem. 2010; 68: 845
- 20b Kubota K. Iwamoto H. Ito H. Org. Biomol. Chem. 2017; 15: 285
- 20c Murata M. Heterocycles 2012; 85: 1795
- 20d Murata M. In Science of Synthesis . Vol. 2. Molander GA. Wolfe JP. Larhed M. Thieme; Stuttgart: 2013: 439
- 21a Cheng V. Hartwig JF. Chem. Rev. 2015; 115: 8946
- 21b Yang Y. Wang C. Sci. China Chem. 2015; 58: 1266
- 21c Sharma R. Kumar R. Kumar I. Singh B. Sharma U. Synthesis 2015; 47: 2347
- 21d Xu Z. Huang W.-S. Zhang J. Xu L.-W. Synthesis 2015; 47: 3645
- 21e Xu Z. Xu L.-W. ChemSusChem 2015; 8: 2176
- 21f Mkhalid IA. I. Barnard JH. Marder TB. Murphy JM. Hartwig JF. Chem. Rev. 2010; 110: 890
- 21g Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
- 21h Ros A. Fernandez R. Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
- 22a Zarate C. Martin R. J. Am. Chem. Soc. 2014; 136: 2236
- 22b Zarate C. Nakajima M. Martin R. J. Am. Chem. Soc. 2017; 139: 1191
- 22c Wiensch EM. Todd DP. Montgomery J. ACS Catal. 2017; 7: 5568
- 23 We did not observe any disilylated product, which indicates that C–OMe cleavage was not achieved under our reaction conditions.
- 24 Recently, a protocol for the decarbonylative borylation of amides was established by Shi and co-workers, see ref. 12c. With a catalytic system consisting of nickel and an N-heterocyclic carbene ligand, the N-Boc,N-Me-derived amides were converted into the corresponding borylation products in moderate to high yields. Interestingly, distorted cyclic imides were completely unsuccessful.
- 25 General Procedure for the Nickel-Catalyzed Decarbonylative Silylation of Arylamides via a Deamidative Reaction Pathway In a nitrogen-filled glovebox, a 10 mL oven-dried sealed tube containing a stirring bar was charged with the corresponding amide (0.20 mmol, 1.0 equiv), yellow Ni(COD)2 (5.5 mg, 10 mol%), copper fluoride(II) (6.1 mg, 30 mol%), and potassium fluoride (34.9 mg, 0.60 mmol, 3.0 equiv). Subsequently, freshly distilled toluene (1.0 mL) was added, and then triethylsilylborane (96.9 mg, 0.40 mmol, 2.0 equiv) and tri-n-butylphosphine ligand (20 μL, 40 mol%) were added, respectively, via microsyringe. The tube with the mixture was sealed and removed from the glovebox. After stirring at 160 °C for 36 h, the mixture was allowed to cool to room temperature, diluted with EtOAc (5 mL), and filtered through a Celite plug, eluting with additional EtOAc (10 mL). The filtrate was concentrated and purified by column chromatography on silica gel to yield the product. Synthesis of 8i Following the general procedure, starting from 1-(4-fluorobenzoyl)piperidine-2,6-dione (47.0 mg, 0.20 mmol), the title product was isolated as colorless oil after flash chromatography on silica gel, 18.5 mg (44%). 1H NMR (600 MHz, CDCl3): δ = 7.48–7.43 (m, 2 H), 7.08–7.01 (m, 2 H), 0.95 (t, J = 7.8 Hz, 9 H), 0.8–0.76 (m, 6 H). 13C NMR (150 MHz, CDCl3): δ = 164.3, 162.7, 136.0, 135.9, 132.7, 132.7, 114.9, 114.7, 7.3, 3.4. 19F NMR (564 MHz, CDCl3): δ = –112.69; IR (ATR): ν = 3031, 2951, 2882, 2327, 2102, 1898, 1586, 1498, 1459, 1231, 1161, 1100, 1007, 818, 721 cm–1. ESI-MS: m/z (%) = 210.0 (38) [M+], 182.1 (28), 181.0 (47), 153.0 (20).
Examples of decarbonylative cross couplings of acyl chlorides:
Decarbonylative cross couplings of carboxylic anhydrides:
For examples of Ni-catalyzed decarbonylative transformations of esters for C–C bond formations, see:
For borylation and silylation, see:
For amination and cyanation, see:
For reviews, see:
For examples of Ni-catalyzed decarbonylative transformations of amides for C–C bond formations, see:
For borylation and reduction, see:
For retro-hydroamidocarbonylation, see:
For examples of Pd- and Rh-catalyzed decarbonylative transformations of amides, see:
For reviews on organosilicon compounds, see:
For reviews on organoboron compounds, see:
For a review on the silylation of organic halides, see:
For recent reviews on the borylation of organic halides, see:
For a review on silylation and borylation of organic halides, see:
For recent reviews on C–H bond silylation, see:
For recent reviews on C–H bond borylation, see:
For the Ni-catalyzed silylation of aryl, methyl ethers, see:
For the Ni-catalyzed silylation of silyloxyarenes, see: