Synthesis 2018; 50(16): 3059-3086
DOI: 10.1055/s-0037-1610021
review
© Georg Thieme Verlag Stuttgart · New York

Furan Oxidation Reactions in the Total Synthesis of Natural Products

Anton S. Makarov
a   Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russian Federation   Email: mu@psu.ru
,
Maxim G. Uchuskin*
a   Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russian Federation   Email: mu@psu.ru
,
Igor V. Trushkov*
b   Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation   Email: itrushkov@mail.ru
c   Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, Moscow 117198, Russian Federation
› Author Affiliations
This work was supported by the Russian Science Foundation (Grant No 17-73-10349).
Further Information

Publication History

Received: 26 February 2018

Accepted after revision: 04 April 2018

Publication Date:
16 July 2018 (online)


Abstract

Recent developments on the transformations of furans under oxidative conditions toward the total synthesis of complex natural compounds are discussed. Reactions and methods are classified according to the type of oxidant used. Comparisons are then made between all the strategies to provide a comprehensive overview. This review covers the most prominent work published from 2011 until 2017.

1 Introduction

2 Reagents and Methods for Oxidation of the Furan Ring

2.1 Singlet Oxygen

2.2 Peroxides and Hydroperoxides

2.3 Quinones

2.4 Halogen-Based Oxidants

2.5 Chromium-Based Oxidants

3 The Achmatowicz Reaction

3.1 Halogen-Based Oxidants

3.2 Hydroperoxides

3.3 Enzymatic Oxidation

4 Conclusion

 
  • References

  • 1 Wöhler F. Ann. Phys. Chem. 1828; 12: 253
    • 2a Total Synthesis of Natural Products: At the Frontiers of Organic Chemistry. Li JJ. Corey EJ. Springer-Verlag; Berlin: 2012
    • 2b Nicolaou KC. Montagnon T. Molecules That Changed the World . Wiley-VCH; Weinheim: 2008
    • 2c Sierra MA. Torre MC. Dead Ends and Detours: Direct Ways to Successful Total Synthesis. Wiley-VCH; Weinheim: 2004
    • 2d Nicolaou KC. Snyder SA. Classics in Total Synthesis II: More Targets, Strategies, Methods. Wiley-VCH; Weinheim: 2003
    • 2e Nicolaou KC. Sorensen EJ. Classics in Total Synthesis: Targets, Strategies, Methods . Wiley-VCH; Weinheim: 1996
    • 2f Corey EJ. Cheng X.-M. The Logic of Chemical Synthesis . John Wiley & Sons; New York: 1995
    • 3a Margaros I. Montagnon T. Tofi M. Pavlakos E. Vassilikogiannakis G. Tetrahedron 2006; 62: 5308
    • 3b Merino P. Tejero T. Delso JI. Matute R. Curr. Org. Chem. 2007; 11: 1076
    • 3c Montagnon T. Noutsias D. Alexopoulou I. Tofi M. Vassilikogiannakis G. Org. Biomol. Chem. 2011; 9: 2031
    • 3d Sharif EU. O’Doherty GA. Eur. J. Org. Chem. 2012; 2095
    • 3e Montagnon T. Kalaitzakis D. Sofiadis M. Vassilikogiannakis G. Org. Biomol. Chem. 2016; 14: 8636
    • 3f Mao B. Fananas-Mastral M. Feringa BL. Chem. Rev. 2017; 117: 10502
    • 3g Song W. Wang S. Tang W. Chem. Asian J. 2017; 12: 1027
  • 4 Schenck GO. Angew. Chem. 1944; 57: 101

    • For recent reviews on the advances in singlet oxygen reactivity, see:
    • 5a Ghogare AA. Greer A. Chem. Rev. 2016; 116: 9994
    • 5b Zamadar M. Greer A. In Handbook of Synthetic Photochemistry . Albini A. Fagnoni M. Wiley-VCH; Weinheim: 2010: 353
    • 5c Clennan EL. Pace A. Tetrahedron 2005; 61: 6665
  • 6 Montagnon T. Kalaitzakis D. Triantafyllakis M. Stratakis M. Vassilikogiannakis G. Chem. Commun. 2014; 50: 15480
  • 7 Montagnon T. Tofi M. Vassilikogiannakis G. Acc. Chem. Res. 2008; 41: 1001
  • 8 Anagnostaki EE. Zografos AL. Org. Lett. 2013; 15: 152
  • 9 Hugelshofer CL. Magauer T. J. Am. Chem. Soc. 2015; 137: 3807
  • 10 Kotzabasaki V. Vassilikogiannakis G. Stratakis M. Org. Lett. 2016; 18: 4982
  • 11 Gryparis C. Lykakis IN. Efe C. Zaravinos I.-P. Vidali T. Kladou E. Stratakis M. Org. Biomol. Chem. 2011; 9: 5655
  • 12 Noutsias D. Vassilikogiannakis G. Org. Lett. 2012; 14: 3565
    • 13a Vasamsetty L. Sahu D. Ganguly B. Khan FA. Mehta G. Tetrahedron 2014; 70: 8488
    • 13b Vasamsetty L. Khan FA. Mehta G. Tetrahedron Lett. 2013; 54: 3522
    • 13c Giera DS. Stark CB. W. RSC Adv. 2013; 3: 21280
  • 14 Wang T. Hoye TR. Nat. Chem. 2015; 7: 641
  • 15 Feringa BL. Butselaar RJ. Tetrahedron Lett. 1983; 24: 1193
  • 16 Hickmann V. Kondoh A. Gabor B. Alcarazo M. Fürstner A. J. Am. Chem. Soc. 2011; 133: 13471
  • 17 Martinez LP. Umemiya S. Wengryniuk SE. Baran PS. J. Am. Chem. Soc. 2016; 138: 7536
  • 18 Michalak K. Morawiak M. Wicha J. Org. Lett. 2016; 18: 6148
  • 19 Gonzalez M. Gandara Z. Martinez A. Gomez G. Fall Y. Tetrahedron Lett. 2013; 54: 3647
    • 20a Smith CJ. Abbanat D. Bernan VS. Maiese WM. Greenstein M. Jompa J. Tahir A. Ireland CM. J. Nat. Prod. 2000; 63: 142
    • 20b Trost BM. Aponick A. J. Am. Chem. Soc. 2006; 128: 3931
  • 21 Reddy CR. Rao NN. Sujitha P. Kumar CG. Synthesis 2012; 44: 1663
  • 22 Rieser MJ. Kozlowski JF. Wood KV. McLaughlin JL. Tetrahedron Lett. 1991; 32: 1137
  • 23 Gonzalez M. Gandara Z. Covelo B. Gomez G. Fall Y. Tetrahedron Lett. 2011; 52: 5983
  • 24 Gonzalez M. Gandara Z. Martinez A. Gomez G. Fall Y. Synthesis 2013; 45: 1693
  • 25 Gonzalez M. Gandara Z. Pazos G. Gomez G. Fall Y. Synthesis 2013; 45: 625
  • 26 Kalaitzakis D. Triantafyllakis M. Sofiadis M. Noutsias D. Vassilikogiannakis G. Angew. Chem. Int. Ed. 2016; 55: 4605
  • 27 Kalaitzakis D. Noutsias D. Vassilikogiannakis G. Org. Lett. 2015; 17: 3596
  • 28 Seah KY. Macnaughton SJ. Dallimore JW. P. Robertson J. Org. Lett. 2014; 16: 884
  • 29 Kalaitzakis D. Triantafyllakis M. Ioannou GI. Vassilikogiannakis G. Angew. Chem. Int. Ed. 2017; 56: 4020
  • 30 Kalaitzakis D. Montagnon T. Alexopoulou I. Vassilikogiannakis G. Angew. Chem. Int. Ed. 2012; 51: 8868
    • 31a Kalaitzakis D. Montagnon T. Antonatou E. Bardaji N. Vassilikogiannakis G. Chem. Eur. J. 2013; 19: 10119
    • 31b Kalaitzakis D. Kouridaki A. Noutsias D. Montagnon T. Vassilikogiannakis G. Angew. Chem. Int. Ed. 2015; 54: 6283
  • 32 Kalaitzakis D. Montagnon T. Antonatou E. Vassilikogiannakis G. Org. Lett. 2013; 15: 3714
    • 33a Zhang F. Simpkins NS. Blake AJ. Org. Biomol. Chem. 2009; 7: 1963
    • 33b Blake AJ. Gill C. Greenhalgh DA. Simpkins NS. Zhang F. Synthesis 2005; 3287
    • 33c Lee HI. Cassidy MP. Rashatasakhon P. Padwa A. Org. Lett. 2003; 5: 5067
  • 34 Ioannou GI. Kalaitzakis D. Vassilikogiannakis G. Eur. J. Org. Chem. 2016; 3304
  • 35 Mascal M. Dutta S. Green Chem. 2011; 13: 40
  • 36 Kalaitzakis D. Triantafyllakis M. Alexopoulou I. Sofiadis M. Vassilikogiannakis G. Angew. Chem. Int. Ed. 2014; 53: 13201
  • 37 Anagnostaki EE. Demertzidou VP. Zografos AL. Chem. Commun. 2015; 51: 2364
  • 38 Shi YP. Wei X. Rodriguez II. Rodriguez AD. Mayer AM. S. Eur. J. Org. Chem. 2009; 493
  • 39 Chen IT. Baitinger I. Schreyer L. Trauner D. Org. Lett. 2014; 16: 166
  • 40 Yuan C. Du B. Deng H. Man Y. Liu B. Angew. Chem. Int. Ed. 2017; 56: 637
  • 41 Vlad PF. Ciocarlan A. Edu C. Aricu A. Biriiac A. Coltsa M. D’Ambrosio M. Deleanu C. Nicolescu A. Shova S. Vornicu N. De Groot A. Tetrahedron 2013; 69: 918
  • 42 Bigi MA. Liu P. Zou L. Houk KN. White MC. Synlett 2012; 23: 2768
  • 43 Hao H.-D. Trauner D. J. Am. Chem. Soc. 2017; 139: 4117
  • 44 Han JC. Liu LZ. Li CC. Yang Z. Chem. Asian J. 2013; 8: 1972
  • 45 Okada T. Sakaguchi K. Shinada T. Ohfune Y. Tetrahedron Lett. 2011; 52: 5744
    • 46a Raffauf RF. Zennie TM. Onan KD. Le Quesne PW. J. Org. Chem. 1984; 49: 2714
    • 46b Zennie TM. Cassady JM. Raffauf RF. J. Nat. Prod. 1986; 49: 695
  • 47 Bürki C. Bonjoch J. Bradshaw B. Villa G. Renaud P. Chem. Eur. J. 2015; 21: 395
  • 48 Huang B. Guo L. Jia Y. Angew. Chem. Int. Ed. 2015; 54: 13599
  • 49 Lee D. Shin I. Hwang Y. Lee K. Seo S.-Y. Kim H. RSC Adv. 2014; 4: 52637
  • 50 Thirupathi B. Reddy PP. Mohapatra DK. J. Org. Chem. 2011; 76: 9835
  • 51 Guney T. Kraus GA. Org. Lett. 2013; 15: 613
  • 52 Boukouvalas J. Lachance N. Synlett 1998; 31

    • For examples of studies published before 2011, see:
    • 53a Boukouvalas J. Cheng Y.-X. Robichaud J. J. Org. Chem. 1998; 63: 228
    • 53b Marcos IS. Pedrero AB. Sexmero MJ. Diez D. Carcia N. Escola MA. Basabe P. Conde A. Moro RF. Urones JG. Synthesis 2005; 3301
    • 53c Boukouvalas J. Robichaud J. Maltais F. Synlett 2006; 2480
    • 53d Boukouvalas J. Wang J.-X. Marion O. Ndzi B. J. Org. Chem. 2006; 71: 6670
    • 53e Boukouvalas J. Loach RP. J. Org. Chem. 2008; 73: 8109
  • 54 Xiao H. Parkin KL. Phytochemistry 2007; 68: 1059
  • 55 Boukouvalas J. Albert V. Tetrahedron Lett. 2012; 53: 3027
  • 56 Boukouvalas J. McCann LC. Tetrahedron Lett. 2011; 52: 1202
  • 57 Kuang H. Yang B. Xia Y. Feng W. Arch. Pharm. Res. 2008; 31: 1094
  • 58 Boukouvalas J. Jean M.-A. Tetrahedron Lett. 2014; 55: 4248
  • 59 Boukouvalas J. Albert V. Loach RP. Lafleur-Lambert R. Tetrahedron 2012; 68: 9592
  • 60 Yamashita T. Yamashita M. Aoyagi S. Tetrahedron Lett. 2011; 52: 4266
  • 61 Nair V. Thomas S. Mathew SC. Vidya N. Rath NP. Tetrahedron 2005; 61: 9533
  • 62 Yuan C. Du B. Yang L. Liu B. J. Am. Chem. Soc. 2013; 135: 9291
  • 63 Du B. Yuan C. Yu T. Yang Y. Liu B. Qin S. Chem. Eur. J. 2014; 20: 2613
  • 64 Yamakoshi H. Sawayama Y. Akahori Y. Kato M. Nakamura S. Org. Lett. 2016; 18: 3430
  • 65 Deng H. Cao W. Liu R. Zhang Y. Liu B. Angew. Chem. Int. Ed. 2017; 56: 5849
  • 66 Sunnam SK. Prasad KR. Synthesis 2013; 45: 1991
  • 67 Kumaraswamy G. Raghu N. Jayaprakash N. Ankamma K. Tetrahedron 2015; 71: 5472
  • 68 Prasad KR. Pawar AB. Org. Lett. 2011; 13: 4252
  • 69 Nicolaou KC. Sun Y.-P. Guduru R. Banerji B. Chen DY.-K. J. Am. Chem. Soc. 2008; 130: 3633
  • 70 Prasad KR. Revu O. J. Org. Chem. 2014; 79: 1461
  • 71 Si D. Kaliappan KP. Synlett 2012; 23: 2822
  • 72 Fu T. McElroy WT. Shamszad M. Heidebrecht RW. Gulledge B. Martin SF. Tetrahedron 2013; 69: 5588
  • 73 Fu T. McElroy WT. Shamszad M. Martin SF. Org. Lett. 2012; 14: 3834
  • 74 Allan KM. Kobayashi K. Rawal VH. J. Am. Chem. Soc. 2012; 134: 1392
  • 75 Yu X. Su F. Liu C. Yuan H. Zhao S. Zhou Z. Quan T. Luo T. J. Am. Chem. Soc. 2016; 138: 6261
  • 76 Pepper HP. Lam HC. George JH. Org. Biomol. Chem. 2017; 15: 4811
  • 77 Yuan W. Cheng S. Fu W. Zhao M. Li X. Cai Y. Dong J. Huang K. Gustafson KR. Yan P. J. Nat. Prod. 2016; 79: 1124
  • 78 Cheng S.-Y. Huang K.-J. Wang S.-K. Wen Z.-H. Chen P.-W. Duh C.-Y. J. Nat. Prod. 2010; 73: 771
  • 79 Liu X. Lee C.-S. Org. Lett. 2012; 14: 2886
  • 80 Demertzidou V. Zografos AL. Org. Biomol. Chem. 2016; 14: 6942
  • 81 Eagan JM. Hori M. Wu J. Kanjiva KS. Snyder SA. Angew. Chem. Int. Ed. 2015; 54: 7842
  • 82 Peng S.-Z. Sha C.-K. Org. Lett. 2015; 17: 3486
  • 83 Boukouvalas J. Thibault C. Loach RP. Synlett 2014; 25: 2139
  • 84 Saitman A. Rulliere P. Sullivan SD. E. Theodorakis EA. Org. Lett. 2011; 13: 5854
  • 85 Achmatowicz O. Bukowski P. Szechner B. Swierzchowska Z. Zamojski A. Tetrahedron 1971; 27: 1973
  • 86 Couladouros EA. Strongilos AT. Angew. Chem. Int. Ed. 2002; 41: 3677
  • 88 For a review of the aza-Achmatowicz reaction, see: van der Pijl F. van Delft FL. Rutjes FP. J. T. Eur. J. Org. Chem. 2015; 4811
  • 89 Magauer T. Myers AG. Org. Lett. 2011; 13: 5584
  • 90 Wang H.-Y. Yang K. Bennett SR. Guo S. Tang W. Angew. Chem. Int. Ed. 2015; 54: 8756
  • 91 Cuccarese MF. Wang H.-YL. O’Doherty GA. Eur. J. Org. Chem. 2013; 3067
  • 92 Wang H.-YL. Guo H. O’Doherty GA. Tetrahedron 2013; 69: 3432
  • 93 Zhao C. Li F. Wang J. Angew. Chem. Int. Ed. 2016; 55: 1820
  • 94 Guo H. O’Doherty GA. Angew. Chem. Int. Ed. 2007; 46: 5206
  • 95 Wang H.-YL. O’Doherty GA. Chem. Commun. 2011; 47: 10251
  • 96 Babu RS. Chen Q. Kang S.-W. Zhou M. O’Doherty GA. J. Am. Chem. Soc. 2012; 134: 11952
  • 97 Song W. Zhao Y. Lynch JC. Kim H. Tang W. Chem. Commun. 2015; 51: 17475
    • 98a Ashmus RA. Jayasuriya AB. Lim Y.-J. O’Doherty GA. Lowary TL. J. Org. Chem. 2016; 81: 3058
    • 98b Bajaj SO. Sharif EU. Akhmedov NG. O’Doherty GA. Chem. Sci. 2014; 5: 2230
    • 98c Shi P. Silva MC. Wang H.-YL. Wu B. Akhmedov NG. Li M. Beuning PJ. O’Doherty GA. ACS Med. Chem. Lett. 2012; 3: 1086
  • 99 Guo H. La Clair JJ. Masler EP. O’Doherty GA. Xing Y. Tetrahedron 2016; 72: 2280
  • 100 Thomson MI. Nichol GS. Lawrence AL. Org. Lett. 2017; 19: 2199
  • 101 Schmidt B. Hauke S. Eur. J. Org. Chem. 2014; 1951
    • 102a Li M. Li Y. Mrozowski RM. Sandusky ZM. Shan M. Song X. Wu B. Zhang Q. Lannigan DA. O’Doherty GA. ACS Med. Chem. Lett. 2015; 6: 95
    • 102b Hinds JW. McKenna SB. Sharif EU. Wang X.-YL. Akhmedov NG. O’Doherty GA. ChemMedChem 2013; 8: 63
    • 102c Wang X.-YL. Rojanasakul Y. O’Doherty GA. ACS Med. Chem. Lett. 2011; 2: 264
    • 102d Wang X.-YL. Xin W. Zhou M. Stueckle TA. Rojanasakul Y. O’Doherty GA. ACS Med. Chem. Lett. 2011; 2: 73
    • 102e Sharif EU. Wang X.-YL. Akhmedov NG. O’Doherty GA. Org. Lett. 2014; 16: 492
    • 102f Mrozowski RM. Sandusky ZM. Vemula R. Wu B. Zhang Q. Lannigan DA. O’Doherty GA. Org. Lett. 2014; 16: 5996
  • 103 Chen Q. Zhong Y. O’Doherty GA. Chem. Commun. 2013; 49: 6806
  • 104 Sridhar Y. Srihari P. Org. Biomol. Chem. 2014; 12: 2950
  • 105 Li Z. Ip FC. F. Ip NY. Tong R. Chem. Eur. J. 2015; 21: 11152
  • 106 Bhuniya R. Nanda S. Tetrahedron 2013; 69: 1153
  • 107 Ma Y. O’Doherty GA. Org. Lett. 2015; 17: 5280
  • 108 Sridhar Y. Srihari P. Eur. J. Org. Chem. 2013; 578
  • 109 Srihari P. Sridhar Y. Eur. J. Org. Chem. 2011; 6690
  • 110 Herrmann AT. Martinez SR. Zakarian A. Org. Lett. 2011; 13: 3636
  • 111 Rodriguez DA. Soto JJ. Pina IC. J. Nat. Prod. 1995; 58: 1209
  • 112 Zhu L. Liu Y. Ma R. Tong R. Angew. Chem. Int. Ed. 2015; 54: 627
  • 113 Zhu L. Tong R. Org. Lett. 2015; 17: 1966
  • 114 Li Z. Tong R. Synthesis 2016; 48: 1630
  • 115 Li Z. Leung T.-F. Tong R. Chem. Commun. 2014; 50: 10990
  • 116 Guo JL. Feng ZM. Yang YJ. Zhang ZW. Zhang PC. Chem. Pharm. Bull. 2010; 58: 983
  • 117 Ding B. Dai Y. Hou YL. Yao XS. J. Asian Nat. Prod. Res. 2015; 17: 559
  • 118 Wood JM. Furkert DP. Brimble MA. Org. Biomol. Chem. 2016; 14: 7659
  • 119 Geng HM. Chen JL.-Y. Furkert DP. Jiang S. Brimble MA. Synlett 2012; 23: 855
  • 120 Geng HM. Stubbing LA. Chen JL. Furkert DP. Brimble MA. Eur. J. Org. Chem. 2014; 6227
  • 121 Yoshimura H. Takahashi K. Ishihara J. Hatakeyama S. Chem. Commun. 2015; 51: 17004
  • 122 Hazuda D. Blau CU. Felock P. Hastings J. Pramanik B. Wolfe A. Bushman F. Farnet C. Goetz M. Williams M. Silverman K. Lingham R. Singh S. Antiviral Chem. Chemother. 1999; 10: 63
  • 123 Reusser F. Antimicrob. Agents Chemother. 1976; 10: 618
  • 124 Yu Z. Vodanovic-Jankovic S. Ledeboer N. Huang S.-X. Rajski SR. Kron M. Shen B. Org. Lett. 2011; 13: 2034
  • 125 Pronin SV. Martinez A. Kuznedelov K. Severinov K. Shuman HA. Kozmin SA. J. Am. Chem. Soc. 2011; 133: 12172
  • 126 Takahashi K. Harada R. Hoshino Y. Kusakabe T. Hatakeyama S. Kato K. Tetrahedron 2017; 73: 3548
  • 127 Yamamoto K. Yakushiji F. Matsumaru T. Ichikawa S. Org. Lett. 2018; 20: 256
  • 128 van der Pijl F. Harmel RK. Richelle GJ. J. Janssen P. van Delft FL. Rutjes FP. J. T. Org. Lett. 2014; 16: 2038
  • 129 Shimokawa J. Harada T. Yokoshima S. Fukuyama T. J. Am. Chem. Soc. 2011; 133: 17634
  • 130 Taniguchi T. Ohnishi H. Ogasawara K. Chem. Commun. 1996; 1477
  • 131 Ren J. Tong R. J. Org. Chem. 2014; 79: 6987
  • 132 Gonzalez N. Rodriguez J. Jimenez C. J. Org. Chem. 1999; 64: 5705
  • 133 Ren J. Wang J. Tong R. Org. Lett. 2015; 17: 744
  • 134 Ren J. Liu Y. Song L. Tong R. Org. Lett. 2014; 16: 2986
  • 135 Sera Y. Masaki ME. Doe M. Buonanno F. Miyake A. Usuki Y. Iio H. Chem. Lett. 2015; 44: 633
  • 136 Zhang M. Liu N. Tang W. J. Am. Chem. Soc. 2013; 135: 12434
  • 137 Min L. Zhang Y. Liang X. Huang J. Bao W. Lee C.-S. Angew. Chem. Int. Ed. 2014; 53: 11294
  • 138 Liang X. Zhou L. Min L. Ye W. Bao W. Ma W. Yang Q. Qiao F. Zhang X. Lee C.-S. J. Org. Chem. 2017; 82: 3463
  • 139 Ma W. Liang X. Ye W. Wang Y. Min L. He S. Lee C.-S. Eur. J. Org. Chem. 2018; 196
  • 140 Nakajima H. Sato B. Fujita T. Takase S. Terano H. Okuhara M. J. Antibiot. 1996; 49: 1196
  • 141 Nakajima H. Hori Y. Terano H. Okuhara M. Manda T. Matsumoto S. Shimomura K. J. Antibiot. 1996; 49: 1204
  • 142 Ghosh AK. Chen Z.-H. Org. Lett. 2013; 15: 5088
  • 143 Kwon K. Ham JS. Kim HY. Sampath V. Lee H.-Y. Asian J. Org. Chem. 2017; 6: 1594
  • 144 Trost BM. Hu Y. Horne DB. J. Am. Chem. Soc. 2007; 129: 11781
  • 145 Li Z. Tong R. J. Org. Chem. 2017; 82: 1127
  • 146 Blume F. Liu Y.-C. Thiel D. Deska J. J. Mol. Catal. B: Enzym. 2016; 134: 280