Synlett 2021; 32(01): 23-29
DOI: 10.1055/s-0040-1706406
account
© Georg Thieme Verlag Stuttgart · New York

C(sp3)–H Bond Functionalization of Alcohols, Ketones, Nitriles, Ethers and Amides using tert-Butyl Hydroperoxide as a Radical Initiator

Nai-Xing Wang
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. of China   Email: nxwang@mail.ipc.ac.cn
,
Lei-Yang Zhang
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. of China   Email: nxwang@mail.ipc.ac.cn
,
Yue-Hua Wu
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. of China   Email: nxwang@mail.ipc.ac.cn
,
Yalan Xing
b   Department of Chemistry, William Paterson University of New Jersey, NJ, 07470, USA   Email: xingy@wpunj.edu
› Author Affiliations
Further Information

Publication History

Received: 27 May 2020

Accepted after revision: 19 June 2020

Publication Date:
31 July 2020 (online)


Abstract

The C(sp3)–H bond is found widely in organic molecules. Recently, the functionalization of C(sp3)–H bonds has developed into a powerful tool for augmenting highly functionalized frameworks in organic synthesis. Based on the results obtained in our group, the present account mainly summarizes recent progress on the functionalization of C(sp3)–H bonds of aliphatic alcohols, ketones, alkyl nitriles, and ethers with styrene or cinnamic acid using tert-butyl hydroperoxide (TBHP) as a radical initiator.

1 Introduction

2 Oxidative Coupling of Styrenes with C(sp3)–H Bonds

3 Decarboxylative Cross-Couplings of α,β-Unsaturated Carboxylic Acids with C(sp3)–H Bonds

4 Conclusions

 
  • References

  • 1 Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
  • 2 Godula K, Sames D. Science 2006; 312: 67
  • 3 Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
  • 4 Sun J, Wang Y, Pan Y. J. Org. Chem. 2015; 80: 8945
  • 5 Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
  • 6 Gulias M, Mascarenas JL. Angew. Chem. Int. Ed. 2016; 55: 11000
  • 7 Zheng J, Breit B. Angew. Chem. Int. Ed. 2019; 58: 3392
  • 8 Zhou W, Qian P, Zhao J, Fang H, Han J, Pan Y. Org. Lett. 2015; 17: 1160
  • 9 Correia CA, Li C.-J. Adv. Synth. Catal. 2010; 352: 1446
  • 10 Li Z, Li CJ. J. Am. Chem. Soc. 2006; 128: 56
  • 11 Cao M, Yesilcimen A, Wasa M. J. Am. Chem. Soc. 2019; 141: 4199
  • 12 Wang C, Liu RH, Tian MQ, Hu XH, Loh TP. Org. Lett. 2018; 20: 4032
  • 13 Zhang Q, Wang T, Zhang X, Tong S, Wu YD, Wang MX. J. Am. Chem. Soc. 2019; 141: 18341
  • 14 Derosa J, Kleinmans R, Tran VT, Karunananda MK, Wisniewski SR, Eastgate MD, Engle KM. J. Am. Chem. Soc. 2018; 140: 17878
  • 15 Lan X.-W, Wang N.-X, Xing Y. Eur. J. Org. Chem. 2017; 5821
  • 16 Zhang T, Wu Y.-H, Wang N.-X, Xing Y. Synthesis 2019; 51: 4531
  • 17 Liu C, Liu D, Lei A. Acc. Chem. Res. 2014; 47: 3459
  • 18 Qin G, Chen X, Yang L, Huang H. ACS Catal. 2015; 5: 2882
  • 19 Du P, Li H, Wang Y, Cheng J, Wan X. Org. Lett. 2014; 16: 6350
  • 20 Zhang F, Du P, Chen J, Wang H, Luo Q, Wan X. Org. Lett. 2014; 16: 1932
  • 21 Zhang W, Wang NX, Bai CB, Wang YJ, Lan XW, Xing Y, Li YH, Wen JL. Sci. Rep. 2015; 5: 15250
  • 22 Lan XW, Wang NX, Zhang W, Wen JL, Bai CB, Xing Y, Li YH. Org. Lett. 2015; 17: 4460
  • 23 Lan XW, Wang NX, Bai CB, Lan CL, Zhang T, Chen SL, Xing Y. Org. Lett. 2016; 18: 5986
  • 24 Yan Z, Wang NX, Gao XW, Li JL, Wu YH, Zhang T, Chen SL, Xing YL. Adv. Synth. Catal. 2019; 361: 1007
  • 25 Cheng JK, Loh TP. J. Am. Chem. Soc. 2015; 137: 42
  • 26 Mondal B, Sahoo SC, Pan SC. Eur. J. Org. Chem. 2015; 3135
  • 27 Zhang J, Jiang J, Xu D, Luo Q, Wang H, Chen J, Li H, Wang Y, Wan X. Angew. Chem. Int. Ed. 2015; 54: 1231
  • 28 Xu C, Han Y, Chen S, Xu D, Zhang B, Shan Z, Du S, Xu L, Gong P. Tetrahedron Lett. 2018; 59: 260
  • 29 Shao W, Lux M, Breugst M, Klussmann M. Org. Chem. Front. 2019; 6: 1796
  • 30 Zhu N, Wang T, Ge L, Li Y, Zhang X, Bao H. Org. Lett. 2017; 19: 4718
  • 31 Neff RK, Su YL, Liu S, Rosado M, Zhang X, Doyle MP. J. Am. Chem. Soc. 2019; 141: 16643
  • 32 Fu MC, Shang R, Zhao B, Wang B, Fu Y. Science 2019; 363: 1429
  • 33 Qian B, Chen S, Wang T, Zhang X, Bao H. J. Am. Chem. Soc. 2017; 139: 13076
  • 34 Zhang T, Wang NX, Xing Y. J. Org. Chem. 2018; 83: 7559
  • 35 Zhang JX, Wang YJ, Zhang W, Wang NX, Bai CB, Xing YL, Li YH, Wen JL. Sci. Rep. 2014; 4: 7446
  • 36 Zhang J.-X, Wang Y.-J, Wang N.-X, Zhang W, Bai C.-B, Li Y.-H, Wen J.-L. Synlett 2014; 25: 1621
  • 37 Zhang T, Lan X.-W, Zhou Y.-Q, Wang N.-X, Wu Y.-H, Xing Y, Wen J.-L. Sci. China Chem. 2017; 61: 180
  • 38 Wu YH, Wang NX, Zhang T, Zhang LY, Gao XW, Xu BC, Xing Y, Chi JY. Org. Lett. 2019; 21: 7450
  • 39 Yan H, Lu L, Rong G, Liu D, Zheng Y, Chen J, Mao J. J. Org. Chem. 2014; 79: 7103