Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(18): 1753-1759
DOI: 10.1055/s-0040-1707195
DOI: 10.1055/s-0040-1707195
synpacts
Iron-Catalyzed Aerobic Oxidative Cross-Dehydrogenative C(sp3)–H/X–H (X = C, N, S) Coupling Reactions
This work was financially supported by the National College Students Innovation and Entrepreneurship Training Program (No. 201810055095). We also thank the Chemistry College of Nankai University for support.Further Information
Publication History
Received: 11 May 2020
Accepted after revision: 15 June 2020
Publication Date:
21 July 2020 (online)
Abstract
The direct functionalization of C(sp3)–H bonds is an attractive research topic in organic synthetic chemistry. The cross-dehydrogenative coupling (CDC) reaction provides a simple and powerful tool for the construction of C–C and C–heteroatom bonds. Recently, some progress has been made in the iron-catalyzed aerobic oxidative CDC reactions. Here, we present recent developments in the direct functionalization of C(sp3)–H bonds catalyzed by simple iron salts with molecular oxygen as the terminal oxidant.
1 Introduction
2 C(sp3)–C Bond Formation
3 C(sp3)–N Bond Formation
4 C(sp3)–S(Se) Bond Formation
5 Conclusion and Outlook
-
References
- 1a Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
- 1b Segundo MS, Correa A. Synthesis 2018; 50: 2853
- 2a Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
- 2b Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 3 Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 4a Phillips AM. F, Pombeiro AJ. L. ChemCatChem 2018; 10: 3354
- 4b Lakshman MK, Vuram PK. Chem. Sci. 2017; 8: 5845
- 4c Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2020; 59: 2998
- 5a Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
- 5b Liu L.-X. Curr. Org. Chem. 2010; 14: 1099
- 5c Bolm C, Legros J, Le Paih J.-L, Zani L. Chem. Rev. 2004; 104: 6217
- 6a Tan Z.-Y, Wu K.-X, Huang L.-S, Wu R.-S, Du Z.-Y, Xu D.-Z. Green Chem. 2020; 22: 332
- 6b Hu R.-M, Han D.-Y, Li N, Huang J, Feng Y, Xu D.-Z. Angew. Chem. Int. Ed. 2020; 59: 3876
- 6c Lai Y.-H, Wu R.-S, Huang J, Huang J.-Y, Xu D.-Z. Org. Lett. 2020; 22: 3825
- 6d Huang L.-S, Han D.-Y, Xu D.-Z. Adv. Synth. Catal. 2019; 361: 4016
- 7a Li C.-J, Li Z. Pure Appl. Chem. 2006; 78: 935
- 7b Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 8 Wu H.-R, Huang H.-Y, Ren C.-L, Liu L, Wang D, Li C.-J. Chem. Eur. J. 2015; 21: 16744
- 9 Li Z, Cao L, Li C.-J. Angew. Chem. Int. Ed. 2007; 46: 6505
- 10 Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
- 11 Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
- 12 McMurry JE. Chem. Rev. 1989; 89: 1513
- 13 Peterson DJ. J. Org. Chem. 1968; 33: 780
- 14 Li G, Qian S, Wang C, You J. Angew. Chem. Int. Ed. 2013; 52: 7837
- 15a Davies HM. L, Manning JR. Nature 2008; 451: 417
- 15b Dequirez G, Pons V, Dauban P. Angew. Chem. Int. Ed. 2012; 51: 7384
- 16a Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
- 16b Timsina YN, Gupton BF, Ellis KC. ACS Catal. 2018; 8: 5732
- 16c Zatolochnaya OV, Gevorgyan V. Nat. Chem. 2014; 6: 661
- 17a Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
- 17b Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
- 18 Hosseinian A, Ahmadi S, Nasab FA. H, Mohammadi R, Vessally E. Top. Curr. Chem. 2018; 376: 39