Subscribe to RSS
DOI: 10.1055/s-0040-1720074
Hemiboronic Acid-Catalyzed Reduction of α,β-Unsaturated Ketones with Reagent-Controlled Chemoselectivity
We thank the Natural Sciences and Engineering Research Council of Canada (grant RGPIN-2017-05086 for D.G.H.; CGS-D scholarship for J.P.G.R.) and the Province of Alberta for financial support.
Dedicated to Professor Donald Matteson in recognition of his seminal contributions to organoboron chemistry.
Abstract
The use of an air-stable cationic hemiboronic acid catalyst for the chemoselective reduction of enones is described. By changing the identity and stoichiometry of the silane reducing agent, either the conjugate reduction products or the fully reduced products can be obtained in high selectivity. In contrast to analogous reactions catalyzed by air- and moisture-sensitive borane catalysts, the hemiboronic acid catalyzed protocol can be performed under ambient conditions. Profiling studies revealed that global reduction proceeds via a rapid initial 1,4-addition, followed by ketone deoxygenation with a rate that is highly silane-dependent.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720074.
- Supporting Information
Publication History
Received: 17 April 2023
Accepted after revision: 16 May 2023
Article published online:
23 June 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Shenvi RA, O’Malley DP, Baran PS. Acc. Chem. Res. 2009; 42: 530
- 2 Clarke JJ, Basemann K, Romano N, Lee SJ, Gagné MR. Org. Lett. 2022; 24: 4135
- 3 Black WC, Bayly C, Belley M, Chan C.-C, Charleson S, Denis D, Gauthier JY, Gordon R, Guay D, Kargman S, Lau CK, Leblanc Y, Mancini J, Ouellet M, Percival D, Roy P, Skorey K, Tagari P, Vickers P, Wong E, Xu L, Prasit P. Bioorg. Med. Chem. Lett. 1996; 6: 725
- 4 Cheenpracha S, Karalai C, Ponglimanont C, Subhadhirasakul S, Tewtrakul S. Bioorg. Med. Chem. 2006; 14: 1710
- 5 Puchalska P, Crawford PA. Cell Metab. 2017; 25: 262
- 6 Foley DJ, Waldmann H. Chem. Soc. Rev. 2022; 51: 4094
- 7 Nagai Y. Org. Prep. Proced. Int. 1980; 12: 13
- 8 Larson GL, Fry JL. Org. React. (N. Y.) 2008; 71: 1
- 9 Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498
- 10 Larson GL, Liberatore RJ. Org. Process Res. Dev. 2021; 25: 1719
- 11 Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
- 12 Lipshutz BH, Chrisman W, Noson K, Papa P, Sclafani JA, Vivian RW, Keith JW. Tetrahedron 2000; 56: 2779
- 13 Jurkauskas V, Sadighi JP, Buchwald SL. Org. Lett. 2003; 5: 2417
- 14 Lipshutz BH, Servesko JM. Angew. Chem. Int. Ed. 2003; 42: 4789
- 15 Rainka MP, Aye Y, Buchwald SL. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5821
- 16 Otsuka H, Shirakawa E, Hayashi T. Chem. Commun. 2007; 1819
- 17 Keinan E, Greenspoon N. J. Am. Chem. Soc. 1986; 108: 7314
- 18 Sumida Y, Yorimitsu H, Oshima K. J. Org. Chem. 2009; 74: 7986
- 19 Keinan E, Perez D. J. Org. Chem. 1987; 52: 2576
- 20 Magnus P, Waring MJ, Scott DA. Tetrahedron Lett. 2000; 41: 9731
- 21 Ojima I, Kogure T. Organometallics 1982; 1: 1390
- 22 Kanazawa Y, Tsuchiya Y, Kobayashi K, Shiomi T, Itoh J.-i, Kukuchi M, Yamamoto T, Nishiyama H. Chem. Eur. J. 2006; 12: 63
- 23 Miller SP, Morken JP. Org. Lett. 2002; 4: 2743
- 24 Fang H, Oestreich M. Chem. Sci. 2020; 11: 12604
- 25 Parks DJ, Piers WE. J. Am. Chem. Soc. 1996; 118: 9440
- 26 Mahdi T, Stephan DW. Angew. Chem. Int. Ed. 2015; 54: 8511
- 27 Chandrasekhar S, Reddy CR, Babu BN. J. Org. Chem. 2002; 67: 9080
- 28 Bajracharya GB, Nogami T, Jin T, Matsuda K, Gevorgyan V, Yamamoto Y. Synthesis 2004; 308
- 29 Chadwick RC, Kardelis V, Lim P, Adronov A. J. Org. Chem. 2014; 79: 7728
- 30 Greb L, Oña-Burgos P, Kubas A, Falk FC, Breher F, Fink K, Paradies J. Dalton Trans. 2012; 41: 9056
- 31 Kim Y, Chang S. Angew. Chem. Int. Ed. 2016; 55: 218
- 32 Ren X, Han C, Feng X, Du H. Synlett 2017; 28: 2421
- 33 Zhan X.-Y, Zhang H, Dong Y, Yang J, He S, Shi Z.-C, Tang L, Wang J.-Y. J. Org. Chem. 2020; 85: 6578
- 34 Nicholson K, Langer T, Thomas SP. Org. Lett. 2021; 23: 2498
- 35 Li Y, de la Torre JA. M, Grabow K, Bentrup U, Junge K, Zhou S, Brückner A, Beller M. Angew. Chem. Int. Ed. 2013; 52: 11577
- 36 Hall DG. Chem. Soc. Rev. 2019; 48: 3475
- 37 Rygus JP. G, Hall DG. Nat. Commun. 2023; 14: 2563
- 38 Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chem. Rev. 2017; 117: 7762
- 39 Pesti J, Larson GL. Org. Process Res. Dev. 2016; 20: 1164
- 40 Pérez JM, Maquilón C, Ramón DJ, Baeza A. Asian J. Org. Chem. 2017; 6: 1440
- 41a 4-(3-Phenylpropanoyl)phenyl acrylate (3h); Typical Procedure Under air, a vial was charged with enone 2h (111 mg, 0.400 mmol), catalyst 1 (4.0 mg, 0.020 mmol, 5 mol%), Et3SiH (80 μL, 0.50 mmol, 1.25 equiv), and HFIP (1.6 mL). The mixture was stirred at rt for 24 h, then concentrated by rotary evaporation. Purification by column chromatography [silica gel, hexane–EtOAc (gradient 30:1 to 20:1)] gave a viscous oil; yield: 92 mg (83%). FTIR (microscope): 3063 (w), 3028 (w), 2927 (w), 1743 (m), 1686 (m), 1599 (m), 1405 (m), 1204 (s), 1146 (s), 980 (m), 799 (w), 750 (w) cm–1. 1H NMR (500 MHz, CDCl3): δ = 8.03 (d, J = 8.8 Hz, 2 H), 7.33–7.30 (m, 2 H), 7.27–7.21 (m, 5 H), 6.65 (dd, J = 17.4, 1.3 Hz, 1 H). 6.34 (dd, J = 17.4, 10.5 Hz, 1 H), 6.07 (dd, J = 10.4, 1.2 Hz, 1 H). 3.31 (t, J = 7.8 Hz, 2 H), 3.09 (t, J = 7.7 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 198.1, 164.1, 154.4, 141.3, 134.6, 133.4, 129.8, 128.7, 128.6, 127.7, 126.3, 121.9, 40.6, 30.2. HRMS (ESI): m/z [M + Na]+ calcd for C18H16NaO3: 303.0992; found: 303.0993.